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Abstract

We propose a model where new product quality is uncertain, but market partic-
ipants learn over time. Regulation balances information’s role in reducing consumer
risk versus reducing access to innovation. Using new data and variation between EU
and US medical device regulations, we document patterns consistent with the model
and estimate its parameters. We find: (1) without information from testing, risk would
severely inhibit usage; (2) US policy maximizes total surplus in our estimated model
while the EU could gain 20 percent with more pre-market testing; and (3) more “post-
market surveillance” could increase surplus 24 percent.
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1 Introduction

Most innovative new products are brought to the market because their makers believe they

provide new value. However, with innovation often comes uncertainty, and once in the

hands of consumers, there is always some chance that the product will not operate as hoped.

The consequences of this failure range from consumer regret about product choice to death.

When this risk matters for welfare, products often must go through pre-market testing and

become approved/certified by a formal body before entering the marketplace. Especially

in concentrated markets, where private and public incentives may diverge significantly, the

standards that the regulatory body imposes have the potential to fundamentally alter market

outcomes by requiring testing that firms would not themselves undertake. As first highlighted

by Peltzman (1973) in the context of pharmaceuticals, higher testing standards can create

value through generating information and decreasing risk to consumers, but this benefit must

be weighed against potential costs of delayed access, fewer products, and higher entry costs

conditional on approval. Today such certification processes are commonplace and a source

of controversy in areas as diverse as electronics, airplanes, automobiles, finance, health care,

and toys.1

This paper uses new, detailed data and exploits exogenous regulatory differences between

the US and EU to identify the impact of product quality information on market outcomes for

medical devices. Among its many duties, US Food and Drug Administration (FDA) oversees

medical device regulation in the US, while in the EU medical device approval is performed

by private organizations called Notified Bodies. The FDA applies a “safe and effective”

standard while EU Notified Bodies only certify safety of the product. For the Class III

medical devices we study, this difference is material.2 Meeting the “effectiveness” standard

often requires manufacturers to generate product performance information through large,

randomized clinical trials. These trials are costly in both time and expense. As a result,

medical device manufactures (many of which are US based) typically introduce products in

the EU well before they seek FDA approval, if they decide to enter the US at all.

The differences between the US and the EU in the medical device approval process have

1See, for example in electronics “European Environmental Rules Propel Change in U.S.”, The New York
Times, July 06, 2004; in airplanes “Boeing Acknowledges Tests Underestimated 787 Battery Risks”, The
New York Times, April 23, 2013; in automobiles “U.S. Sues Chrysler After Auto Maker Refuses to Recall
Cars”, The New York Times, June 5, 1996; in finance “An FDA for Securities Could Help Avert Crises”,
Bloomberg, April 2, 2012; in toys “Toy Makers Fight for Exemption From Rules”, The New York Times,
September 28, 2010.

2In particular, our analysis focuses on coronary stents 2004-13. We chose this segment as the coronary
stent market is large and important with excellent market data and with constant innovations introduced
over time. Coronary stents treat ischemic heart disease—the narrowing of the coronary artery caused by
fatty deposits. Ischemic heart disease is the leading cause of global death accounting for 7 million fatalities
in 2010 (Lozano 2012). In 2013 total, world-wide sales of coronary stents exceeded $7.9 billion with the vast
majority of those sales occurring in the US and the EU.
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led to calls for reform in both regions. In the US, the FDA has faced attacks from both

sides, with some claiming that a slower, tougher approval process is crippling innovation;

and others claiming that the approval process is too lax, allowing too many dangerous devices

into the market.3 Congress has responded to this debate by including measures in the 21st

Century Cures Bill that would change the amount of information the FDA is allowed to

require before market approval.4

Despite the broad importance, empirical research on information provision for innovative

new products is scarce. One major challenge is finding exogenous variation in information

provision regimes. To address this challenge, we exploit the fact that the EU approval

process requires less pre-market testing from manufacturers and as a consequence is both

faster and less costly than the US process for any given device. We describe this difference

in detail and argue it is due to historical political processes and not correlated with market

demand for devices. As a result, we are able to observe outcomes for the same devices under

two regulatory regimes with different pre-market testing requirements. Most importantly,

we observe EU market outcomes for devices that are concurrently undergoing US trials as

well as for those devices that are not subject to US trials. The key additional identifying

assumption (which we verify in the data) is that selection into US trials is based on the level

of expected US profits, not uncertainty about product quality at the time of EU entry.

A further challenge is assembling data and a corresponding empirical framework that

can then quantify the returns from increased information relative to the costs of decreased

access. To address this challenge we acquire monthly data on product-level prices, quantities,

and diagnostic procedures in the US and EU. Paired with the variation in participation in

US clinical trials, we show how revealed preference arguments imply that such data capture

the state of market knowledge and learning that changes that knowledge, and how these

in turn affect consumer choice and thus welfare. This approach is similar in spirit to the

pioneering work of Peltzman (1973) where he uses pre-/post- analysis to argue that the 1962

Kefauver-Harris Amendments to the Food, Drug, and Cosmetic Act (which require clinical

trials for pharmaceuticals prior to their introduction to the market) harmed consumers by

reducing access to drugs without increasing product information. Our ability to observe EU

usage patterns for devices both in and out of US trials allows us to go further in directly

estimating information generated and how consumer demand responds to information.5

3For an example arguing the FDA is too lax “Report Criticized F.D.A. on Device Testing”, The New
York Times, January 15, 2009; and too tight “FDA Seeks to Toughen Defibrillator Regulations”, The New
York Times, March 22, 2013.

4See “How Not to Fix the FDA”, The New York Times, July 20, 2015.
5Our approach contrasts with studies of the FDA approval process which have used product introductions

and withdrawals instead of market usage data (e.g., Grabowski and Wang 2008; Olson 2008; Philipson et al.
2008). The EU does not record introductions or recalls of devices in a publicly available database. More
importantly, our interest is in understanding whether further efficacy testing required by the US provides
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We begin the analysis by constructing a theoretical model to capture the risk/access

tradeoff inherent in these policy debates, generate empirical predictions to take to the data,

and provide a mapping from the data to welfare estimates. In the model, products are

invented with uncertain quality, a regulator requires some level of premarket testing that a

firm must invest in if it wishes to bring a product to market, and consumers can learn about

product quality over time through these trials and/or through observational learning in the

marketplace. Uncertainty and learning are symmetric across manufacturers, consumers, and

the regulator.6 We focus on the case where the rate of learning in premarket clinical trials is

greater than the rate of learning after market entry. This introduces a tradeoff where more

regulation leads to more information and less risk; but it also delays access and raises entry

costs for new products.

Our empirical work begins by first documenting multiple reduced-form patterns in the

data and linking these patterns to the predictions of our model. The EU enjoys greater access

to the newest medical technologies, while also bearing greater risk by allowing entry of a wider

range of device qualities, earlier in each device’s lifecycle. On average, US physicians have

11 stents available to implant while their EU counterparts have 39 to from which to choose.

Conditional on the product entering the US, EU physicians have access to the product 10

months earlier. The average share (relative to the outside good) of US entering products

is much higher, and importantly, is flat over the product lifecycle. Average volatility in

shares over time in the US is low and flat. Through the lens of our model, these patterns

are consistent with no market learning regarding product quality after product launch in

the US. In contrast, after product launch in the EU, the average volatility begins high and

decreases over time, while average share increases over time, consistent with the predictions

of our model if in fact there is learning.

We then establish that the patterns we observe in the EU market are driven entirely by

information spillovers from US clinical trials. By focusing on within-product variation and

comparing the same products launched in different regions (the US and EU) and also EU

patterns for products that are and are not undergoing US trials (including an overlapping

more precise information on product quality, on which negative tail events such as recalls provide little
information.

6The symmetric information assumption is a departure from the asymmetric information that is fre-
quently the focus of discussion in regulation of pharmaceutical markets (Scott Morton and Kyle 2012) and
in the broader literature on certification (Dranove and Jin 2010). Our institutional setting of coronary
stents—where trials generate important information that could not be otherwise obtained by manufacturers
and interventional cardiologists pay close attention to new technologies being developed—is a case where
symmetric information seems like a reasonable approximation. We believe that many markets with published
testing results and informed consumers fit this model, and indeed symmetric information games of persuasion
and information disclosure have recently received increased attention in the literature (e.g., Kamenica and
Gentzkow 2011). We also provide an empirical test that fails to reject the symmetric information assumption
in our data.
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support sample that have similar estimated qualities upon EU introduction), we are able to

rule out alternative mechanisms such as selection on product quality, non-learning models

of product diffusion, learning from observational use vs. learning from clinical trials, and

selection on product uncertainty.

In order to develop welfare measures and address policy questions regarding optimal reg-

ulation, we estimate the structural parameters of the model. Using the EU market data

and variation in product enrollment in US trials, we estimate the distribution of product

qualities and risk as well as the speed of learning and preferences of consumers in the market-

place, and we validate our estimates with comparisons to a number of outside data sources.

Consistent with the reduced form evidence, the demand parameter estimates indicate that

FDA required clinical trials generate significant information while there is practically no ob-

servational learning via experience in the EU marketplace. Combined with product quality

estimates that indicate significant variation in stent quality, this implies the returns to early

product testing are large for stents during this time period. A partial equilibrium analysis

suggests that without the EU safety testing the risk faced would be enough to deter a sig-

nificant portion of consumers from choosing stenting versus the next best alternative, and

the further US efficacy testing substantially decreases the risk of using an inferior product.

We then consider optimal regulatory policy by combining these estimates of the effects

of information on risk with our estimates of product quality and the value of access to the

newest products over time. We develop simple-to-compute cases that bound total surplus

as a function of regulatory policy and firm behavior, and use these bounds to generate a

partially identified set of optimal regulatory policies.7 The results imply that total surplus

is maximized when the average premarket clinical trial is at least seven months longer than

the current EU requirements. Around the optimum, total surplus is relatively insensitive

to the time spent in premarket testing, implying that, for stents 2004-13, US regulatory

policy is statistically equivalent to the policy that maximizes total surplus in our estimated

model. While the EU benefits from free-riding on the information generated by US trials, we

estimate EU surplus could be increased by 20 percent by requiring more pre-market testing

for stents.

Our final piece of analysis examines optimal policy under counterfactual worlds with

greater “post-market surveillance”. This idea, which is a centerpiece of the FDA reforms

proposed in the 21st Century Cures legislation, has a straightforward logic: increased learning

post-market approval could maintain risk-reduction while lowering pre-market requirements,

thus decreasing entry costs and lags. Our estimate of no observational learning in the EU

7A full supply side model requires frontier work in bargaining and dynamic entry modeling. Our approach
avoids the need for a full supply model by using simple assumptions on supply behavior and a partial
identification approach (pioneered by Manski (2003) and more recently in Pakes et al. (2015) and others to
estimate primitive parameters) on the set of counterfactual outcomes based on point identified primitives.
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for coronary stents is perhaps not surprising, given that there is no systematic data collected

that links stents used to clinical outcomes; but we find that if post-approval learning rates

could approach those we observe from clinical trials at a comparable cost, the benefits from

such a policy change are substantial.8 In the extreme case where post-approval learning is

fully informative and not too costly, the optimal policy is to require no pre-approval trials

at all, which would yield a welfare increase of 24 percent in our estimated model.

Because our attention is on the issues of information generation, risk, and access, our

analysis should be interpreted as holding the other roles of the regulator as fixed.9 Though we

do model entry decisions conditional on arrival of an innovation, we take the arrival process

for new products as exogenous and abstract away from feedback effects from the device

regulatory regime to the incentives to invest in the innovative process itself. In this sense our

approach and results are related to the larger literature on quality information disclosure (e.g.

Dranove and Jin 2010), but whereas the focus there is typically on the difference between no

disclosure and some disclosure, our focus is on the amount of information required, given a

basic disclosure regime. We also measure how this information affects market structure and

welfare through entry and consumption decisions.

We believe this focus on market structure in our paper is complementary to recent em-

pirical research on other regulatory tools that affect product entry incentives, such as patent

breadth and length (Budish, Roin, and Williams 2015) and price regulations (Kyle 2007;

Filson 2012). Whereas the focus of that literature has been on innovative activity with styl-

ized monopoly market structures, we show that the welfare impact of regulation on market

structure and buyer decisions can be large as well. New medical technologies with uncertain

quality can only achieve their welfare potential if the necessary studies to document the

product’s clinical performance are performed.

More broadly, our work builds on recent empirical research on optimal regulation (Tim-

mins 2002; Seim and Waldfogel 2013; Miravete, Seim, and Thurk 2014) and consumer learn-

ing (Roberts and Urban 1988; Erdem and Keane 1996; Ackerberg 2003; Crawford and Shum

2005; Ching 2010), and to our knowledge is the first to combine these two. This combination

is essential in allowing us to build on the pioneering work of Peltzman (1973) in measuring

the impact of regulatory information requirements. As we build on established models and

use frequently available data, we provide an approach that others might find useful to the

study of regulation and product approval/certification in other markets.

8In the US, the FDA has recently introduced a Unique Device Identifier system that could facilitate better
post-market data collection. However, there is currently debate regarding whether UDIs will be added to
patient claims databases.

9In addition to determining safety and efficacy requirements, the FDA also plays an important role in
defining and certifying testing procedures themselves. The FDA also regulates post-market introduction
activities: ensuring that only information established via these tests is allowed on product labeling and in
marketing and sales communications; and monitoring good manufacturing processes.
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Our analysis of the impact of different regulatory regimes not only speaks to the eco-

nomics of information and product quality regulation, but also informs policies currently

under debate with potentially large welfare consequences. The amount of economic activity

regulated by the FDA and the Notified Bodies is significant. In the US the medical device

market sales exceeded $150B in 2010 or 6 percent of total national health expenditures and

approximately $130B (7.5 percent) in the EU.10 Further, the introduction of new medical

technologies are responsible for significant reductions in mortality; and in so far as different

regulatory regimes affect the availability of these technologies, their welfare impact extends

beyond their direct impact on commerce. We conclude the paper by discussing how one

might approach applying our analysis and results to products beyond coronary stents.

2 Medical Device Regulation in the US and the EU

The term medical device applies to a broad set of product categories, ranging from crutches

to pacemakers to CT scanners. In this study we focus on coronary stents, a blockbuster

device in terms of sales and health impact, but also typical of implantable devices that are

deemed “necessary for the sustainment of life” and thus regulated as Class III devices in the

US and EU. It is for Class III devices that EU and US regulatory approaches diverge most

widely, creating the variation we leverage in our study.

Before detailing these regulatory differences, however, it is useful to keep in mind some

basic facts about the structure of decision making and players in the market. First, hospitals

generate revenue by performing a procedure (such as an angioplasty with stent), and the

price for purchasing the device is an input cost the hospital incurs. The physician who

performs the procedure will typically be compensated either as a salaried employee of the

hospital, or on a fee-for-service basis for the procedure, where in either case importantly

the financial benefits to the physician are unrelated to the specific brand of device used.

Physicians typically have strong preferences about which brand of device is best to use for a

given patient/lesion type (devices in this class are often referred to as “physician preference

items”) because devices are differentiated in physical characteristics of the implanted device

itself (for a stent examples are shape, strength, flexibility, and type of drug/polymer) and

also characteristics that effect ease of implantation (for stents unexpanded size and flexibility,

and controls and capabilities of the catheters and balloons used in delivery). The supply side

of the market is thus a differentiated oligopoly, and prices are typically negotiated between

manufacturers and hospitals or hospital systems.

For the purposes of this study, the most important features of the stent market to note

are the constant innovations over time in terms of both vertical quality advances that make

10Donahoe and King, 2012; Medtech Europe, 2013
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similar yet better products for the mass market, and also horizontally differentiated products

designed to address less common niche markets such as small vessel and bifurcated lesions.

Interventional cardiologists are a relatively small and technologically aware community who

stay engaged through close relationships with manufacturers, journals, and several well-

attended meetings each year (TCT each October, ACC in March, and ESC in August each

year, as well as numerous regional affiliated conferences throughout the year) at which the

most recent results of in-progress clinical trials are reported.

2.1 Similarities and Differences in US and EU Regulation

Medical device regulation in the US began with the passage of the Medical Device Amend-

ments Act of 1976. This law established the regulator pathway for medical devices in the

US, placing oversight authority within the FDA. The criteria the FDA is mandated to use

is “safe and effective.” The Act established three classification of devices (I, II and III)

which are assigned based on the perceived risks associated with using the device. Class III

devices are defined as those used in in supporting or sustaining human life, of substantial

importance in preventing impairment of human health, or presents a potential unreasonable

risk of illness or injury.

In the US, the approval process for a Class III device generally requires data from ran-

domized clinical trials involving thousands of patients and costing tens of millions of dollars

to complete.11 For stents, the FDA generally requires the trial to demonstrate efficacy a

number of clinically meaningful end points including target lesion revascularization (TLR),

death, and major adverse cardiac events (MACE) which is a composite of death, myocardial

infarction (heart attack), stent thrombosis, and target lesion revascularization.

In the EU, the approval process for Class III devices is very different than in the US.

Medical devices are regulated by three EU Directives. The main directive is the Medical

Devices Directive which passed in June, 1993 and has been adopted by each EU member

state. A medical device is approved for marketing in the EU once it receives a ‘CE mark’ of

conformity. The CE mark system relies heavily on third parties know as “notified bodies”

to implement regulatory control over devices. Notified bodies are independent, commercial

organizations that are designated, monitored and audited by the relevant member states via

“competent authorities.” Currently, there are more than 70 active notified bodies within the

11There are two basic regulatory pathways within the FDA to bring a device to market: Pre-Market
Approval (PMA) and the 510(k). The PMA process applies to Class III devices, while the 510(k) process
generally applies to Class II and some Class I devices. Under the 510(k) process the manufacturer needs to
demonstrate that the device is ‘substantially equivalent’ to a predicate device. Generally, bench testing data
and perhaps a very small clinical study is all that is necessary for a device to demonstrate equivalency. While
there is no standard timetable for 510(k) clearance, a straightforward clearance can typically be obtained
within several months.

8



EU. A firm is free to choose any notified body designated to cover the particular type of device

under review.12 To obtain an CE mark a Class III medical device needs to only demonstrate

safety and performance. Compliance with this standard usually can be demonstrated with

much simpler and cheaper clinical trials than required by the FDA.13

The difference between the two regulatory regimes is largely a consequence of different

histories that lead up to the passing of the primary medical device legislation in the two

regions. The Medical Device Directive, the centerpiece of the EU medical device regulatory

framework, was passed in 1993 when there was keen interest in a new approach to harmoniz-

ing regulatory frameworks across the member states. The EU had just undertaken a long and

frustrating harmonization process for food and drugs. This new approach sought to avoid

detailed and bureaucratic government approval processes, particularly duplicative approvals.

This framework was also applied to other products including toys, pressure vessels and per-

sonal protective equipment. In contrast, the US medical device regulatory framework was

established after the Dalkon Shield injured several thousand women which garnered signifi-

cant public outcry. The FDA already had oversight on some aspects of medical devices and

expanding that role was the most viable political option. At that time, a non-governmental

approach to device regulation was never seriously considered by the Congress.

The gap between the two regulatory systems is the focus of a number of consulting,

lobbying, and government reports. For example, a series of Boston Consulting Group reports

shows that there is no difference in recalls between devices that are marketed in both the US

and the EU. The FDA countered the BCG report with their own case study of 10 devices

that were approved in the EU, not approved by the FDA, and lead to significant adverse

events in patients. The FDA study only focused on the negative consequences of the EU’s

relatively lax regulatory standards and does not acknowledge the benefits of greater access

to devices in the EU. Perhaps most importantly, by focusing on extreme and rare cases of

recalls and adverse events, none of these studies address the primary difference inherent in

FDA vs CE Mark requirements for Class III devices—more precise estimation of product

efficacy.

It is important to note that clinical trial results suggest meaningful differences in the

clinical efficacy of stents. For example, in Medtronic’s FDA approval for its Endeavor stent,

the summary reports that Endeavor’s 9-month major adverse cardiac event (MACE) rate

is equivalent of Boston Scientific’s Taxus Express II and 20 percent less than J&J’s Cypher

stent. Its target vessel failure (TVF) rate was 8 percent less than the Taxus stent.14 The

12See Guidelines Relating to Medical Devices Directives, http://ec.europa.eu/health/medical-
devices/documents/guidelines/.

13In both the US and EU, new-to-the-world devices may face the additional hurdle of gaining payor
reimbursement, but the devices we study are second, third, and fourth generation products, so coverage and
payment determination has already been made prior to their introduction.

14http://www.accessdata.fda.gov/cdrh docs/pdf6/P060033b.pdf
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impact of TVF is significant as it requires additional interventions to restore vessel function.

One feature both the US and EU share is that outside of clinical trials and wide-spread,

catastrophic device failure, useful information on device performance is scarce. There is vir-

tually no ability in the post-market environment to systematically monitor the key clinical

performance attributes (e.g. mortality, MACE, TVF) of medical devices.15 This fact has

received attention lately in the US, with the FDA introducing a new unique device identi-

fier database and the 21st Century Cures act proposing decreased pre-market testing and

increased post-market surveillance in some therapeutic areas.

While the consequences of the different regulatory regimes has generated significant policy

debate, what is less controversial is that there are significant lags between the US and the EU

in device introduction. Conditional on entry into both the US and the EU, BCG documents

that medical devices are introduced into the US approximately four years after the EU.16

3 A Model of Learning, Regulation, and Choice

In order to guide our empirical analysis, we first develop a model that captures the trade-

off between risk and access involved in regulating market entry of products with uncertain

quality. This model also serves as the framework for the structural estimation and counter-

factuals. In our model, products are developed with uncertain quality; this uncertainty is

potentially resolved over time via exogenous signals (e.g. from reporting of clinical trials or

other research, or from observational learning); a regulator requires costly premarket clin-

ical trials to accelerate learning; firms enter when they expect entry to be profitable; and

risk-averse consumers choose from the available products in the market at a point in time.

Our model captures many of the salient features of medical device markets and the role

of the regulator. However, the medical device sector is complicated and there are notable

institutional features that we purposefully de-emphasize in order to keep the model tractable

and parsimonious.

As we have modeled, medical device quality is uncertain, but this uncertainty is sym-

metric among manufacturers, regulators, and consumers. If manufacturers are differentially

15The FDA maintains an adverse event reporting system called MAUDE to which certain entities
are required to submit reports (e.g. manufacturers) and voluntary submissions are also allowed. Un-
fortunately, because the criteria for submission are not well defined, MAUDE receives hundreds of
thousands of submissions per year, and reports often have nothing to do with the involved device
per se. As the FDA states on their web site, the MAUDE system alone “cannot be used to estab-
lish rates of events, evaluate a change in event rates over time or compare event rates between de-
vices.” (https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/search.cfm) We have spent consid-
erable time attempting to find post-market performance data in the EU, and to the best of our knowledge
no attempt is made in the EU to systematically track device performance.

16BCG (2012) Regulation and Access to Innovative Medical Technologies.
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informed about their devices’ qualities, device regulation could solve a lemons problem (Le-

land 1979). At the extensive margin of whether to have any regulation at all, the lemons

problem is surely relevant. However, our focus is on the appropriate standards of that regu-

lation not on whether the regulation should exist at all. The variation that we exploit aligns

with this focus. The EU is more lax in their standard relative to the US yet we are unaware

of any significant evidence that the device market in the EU ‘unravels’ more than in the US.

In fact, the presence of many more device offerings in the EU suggests that the variation in

regulations between the US and EU is not a margin that would induce a lemons type mar-

ket failure. This may be due to the fact that the relatively small number of interventional

cardiologists who use the devices we study tend to stay well-informed about the most recent

clinical updates for the products on the market (two days each at the three major conferences

are devoted to reporting such data). While we believe that the institutional setting and the

policy relevant margin suggest that the symmetric information framework is the appropriate

lens through which to perform the analysis, we nevertheless test this assumption in Section

4.1.2 and we cannot reject symmetry of information.

We also do not model the possibility that the regulator will reject a device. We do,

however, allow for manufacturers’ optimal entry decisions in the face of clinical trial and

entry costs conditional on developing the device. This amounts to an implicit assumption

that no firm would enter with a product the regulator would want to reject, which is exactly

the case under our symmetric information assumption. We have investigated the frequency

of FDA rejections of coronary stents over the time frame of our data and have found no

evidence of a single submitted PMA application for coronary stents that was ultimately

rejected.17 18

The next several subsections lay out the model. Section 3.1 describes how market partic-

ipants learn about product quality over time, Section 3.2 describes consumer behavior and

how it is affected by uncertainty about product quality, Section 3.3 turns to supplier pricing

17As the FDA does not report data on the number of PMA applications that are rejected, we performed
searches of device manufacturers press releases and financial filings. It is important to note that there are
frequent communications between the FDA staff and the device manufacturer over a given application and
the evidence the FDA needs to see prior to granting approval. Thus, our impression is that there are few
devices that submit a full PMA applications that are rejected as the process is costly for the manufacturer
and they have a relative precise estimate of the likelihood of approval prior to submission. This differs
from the pharmaceutical context where there is often disagreement between the manufacturer and regulator
regarding the weighting of any positive treatment effect vs. potential negative side effects (and where an
asymmetric information model might be more appropriate in some contexts such as drugs primarily marketed
to non-expert general practitioners, and FDA acceptance sends an important quality signal to the market).

18Johnson and Johnson’s CoStar stent was pulled off the market in the EU in 2007 after it performed
poorly in its FDA required pivotal trials. Because of this, J&J did not submit a PMA application for this
stent. See “Johnson and Johnson Won’t Seek Approval for a Heart Stent,” New York Times, May 8, 2007.
As we discuss below and consistent with our framework, we observe CoStar’s EU share erode significantly
after the negative results are reported.
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and entry, and finally Section 3.4 lays out the role for a regulator to affect total surplus via

information requirements and their effect on risk and access.

3.1 Information and Learning

In our framework, consumers (and manufacturers and regulators) are uncertain about the

quality of newly developed stents. The quality of the stent captures all features of the device

that physicians and patients consider when selecting a particular device including ease of

use and its efficacy/safety profile. Information on the quality of a given a stent accrues to

the market over time from two sources, each with potentially different precision: First, prod-

ucts undergo clinical trials, and information from these trials diffuses to physicians through

updates reported at major cardiology meetings throughout the year, published articles in

medical journals, and discussions with peers and medical device representatives. Second,

usage of the product may generate observational learning which is then shared and diffuses

to the market.

Specifically, we assume innovative new devices j are each developed with quality Qj

according to a distribution Ft(Q):19

Qj ∼ Ft(Q) := N(Qt, σ
2
Q). (1)

where the subscript t allows for technological advancement over time.20

Over time, unbiased but noisy signals A arrive regarding the product’s quality as new

information from ongoing clinical trials and real world usage are generated, released, and

diffused into the market. Letting age a denote the time since product j was introduced into

the market (not calendar time), Aja is given by:21

Aja = Qj + νja where νja ∼

{
N(0, σ2

Ac) if in clinical trials

N(0, σ2
A) if not

(2)

Given these signals, beliefs about product quality are updated via Bayes’ rule, resulting

19For simplicity, we assumed the prior and signal process to be normally distributed. In principle, we
could relax this assumption. However, sample size limitations make taken a more non-parametric route
undesirable, and we find that the simple normal model fits the data quite well with a small number of
parameters.

20We abstract away from any feedback effects from the regulatory regime on the incentive of device
manufacturers to invest in discovering new products and assume that the quality distribution and innovation
arrival process are exogenously fixed. Depending on one’s model of the nature of innovation, this could be
thought of as a “shorter run” model of potential response to market changes.

21We assume that information release from a clinical trial accrues to the market with a consistent signal
each month. This fits with the regular release of interim results at major meetings and in journal articles
and subsequent further diffusion via word of mouth. We have examined and found no evidence of a discrete
demand response in the EU upon US trial completion or FDA approval.
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in posterior beliefs distributed normal with mean:

Qja+1 =
σ2
ja

σ2
ja + σ2

Aja+1

Aja+1 +
σ2
Aja+1

σ2
ja + σ2

Aja+1

Qja (3)

and variance:

σ2
ja+1 =

σ2
Aja+1

σ2
ja + σ2

Aja+1

σ2
ja. (4)

With this uncertainty and learning as a backdrop, the regulator must decide on the re-

quired length of clinical trials, trading off any costs of later access versus any benefits of

more information and reduced risk. Once a product has been subjected to the required clin-

ical trials, it is released to the market and consumers (doctors and patients) make decisions

about which product to use given the current available choice set and information. We begin

with the consumers’ problem and work backwards.

3.2 Consumer Choice

Given beliefs regarding a stent’s quality and the uncertainty over that quality, we assume

consumers select the stent that yields the highest expected utility. For each patient/doctor

combination i the indirect expected utility function from using device j at time t (where

the t subscript refers to the calendar month, which will be associated with an age a for a

product j) takes the form

uijt = Qjt − θppjt −
ρ

2
σ2
jt − γ ln(|Jt|) + εijt =: δjt + εijt, (5)

where θp is the weight on price pjt in the physician’s choice, ρ is the coefficient of risk

aversion, εijt is an i.i.d. error term capturing the deviation of doctor preferences and/or

patient appropriateness for device j relative to the population average, and γ ln(|Jt|) is the

adjustment suggested by Ackerberg and Rysman (2005) to model the fact that unobserved

product space may become “congested” as the set of products available Jt grows. In our

setting this helps to capture duplicative product innovations and/or the fact that not all

products may be in the choice set for all patient/doctor combinations.

Assuming consumers choose the product j that maximizes expected utility, the set

of patients for whom a doctor chooses product j (in month t) is then Ajt := {i|j =

arg maxk∈Jt uikt}. Expected quantities are then given by the market size Mt and the choice

probabilities:

qjt = Mtsjt = MtPr[j = arg max
k∈Jt

uikt] = Mt

∫
Ajt

ft(ε)dε = Mt
eδjt∑
k∈Jt e

δkt
, (6)

13



where the last equality obtains from the assumption that ε is distributed “logit” i.i.d. ex-

treme value type I with unit variance. The choice set includes outside option j = 0, utility

normalized to zero, representing the best non-stent treatment for that patient. Producer

variable profits are then πjt := qjt(pjt − cjt).
Expected consumer surplus (ex-ante, relative to the best non-stent alternative) can then

be obtained by summing over patient utility for the products chosen, scaling utils into dollars,

and scaling for market size:

CS(Jt) = Mt
1

θp

∫
Ajt

uijtft(ε)dε = Mt
1

θp
ln

(∑
j∈Jt

eδjt

)
, (7)

where the final equality obtains from the logit distributional assumption on ε. Because the

product quality distribution has support over the entire quality space (a stent can receive

a large in absolute value negative draw from N(Qt, σ
2
Q)), the consumer surplus formulation

explicitly accounts for the possibility that that a given stent could systematically underper-

form. In this way, our framework captures the health risks including significant harm from

need for repeat procedures (TLR) or death (MACE) that consumers face when selecting a

stent.

3.3 Bounds on Supply Effects on Total Surplus

We are interested in total surplus, TS(Jt) = CS(Jt) +
∑

j∈Jt πjt − φ
e |J e

t | (where J e
t (T c)

is the set of firms who enter in period t), as the object that the regulator should seek

to maximize in its choice of the optimal length of clinical trials T c.22 Total surplus is a

function of the choice set Jt, which in turn is a function of supplier entry behavior, given

costs of trials required for entry φe(T c) and expected profits after entry, conditional on the

expected behavior of other firms. A fully specified supply model requires models of pricing

and entry/exit dynamics. In the case of our analysis, both of these modeling efforts would

entail a combination of approximating assumptions and work at the frontier of the business-

to-business contracting and dynamic oligopoly literatures. For pricing, we would need to

either construct an approximate expected price function at our region-time level of analysis,

or build on the hospital-time level analysis in Grennan (2013, 2014) to allow for strategic

choice in who contracts with whom (Lee and Fong 2013), an important feature of the EU

market during the time frame we study. For dynamic entry and exit, we face a problem with

22Other regulator objective functions are also plausible. The goal of this paper is not to uncover the true
regulator objective function but to examine the welfare implications of different regulatory approaches. We
choose this objective function as it seems the most natural. We recognized that different regulator objective
functions would have implications for the optimal policy but the regulator will still have to account for
inherent trade-off between risk and access in the optimal policy.
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a large and continuous state space, requiring approximations of the type explored in recent

papers such as Ifrach and Weintraub (2014). Because constructing such models involves a

substantial refocusing of the contributions of this paper to arrive at point estimates that

would be caveat to a number of additional modeling and approximating assumptions, we

instead take a bounds approach to partially identify the answers to our policy questions of

interest.

We construct bounds on the total surplus generated under any regulatory policy TS(T c)

that rely on weak assumptions on supply side behavior:23

Supply Assumption 1 (EU Entry Costs): EU entry costs are low enough such that all

products developed with positive expected profits after EU testing enter.

Supply Assumption 2 (Entry Policy): The equilibrium entry policy of firms is increas-

ing in own expected profits: πj > π′j ⇒ Pr[Enterjt|πj] > Pr[Enterjt|π′j].

Supply Assumption 3 (Pricing): Prices are bounded by the marginal contribution of

the product: pj − cj ≤ TS(J )− TS(J \ {j}).

Under these assumptions, we can construct upper and lower bounds for total surplus. The

upper bound is given by the case where there are no direct fixed costs of longer trials, so all

firms enter in equilibrium, and the only impact of increasing trial length on market structure

is to delay access to the newest technologies (in addition to increasing learning). The lower

bound is given by assuming that the cost of trials is $1.6M per month, but with firms’ entry

decisions made under the assumption that other firms enter as if entry costs are zero.24

Fewer firms will enter than in the true equilibrium because this case doesn’t allow expected

market shares and prices to increase as fixed costs increase and the market becomes more

concentrated. Full proofs are provided in Appendix A.1.

The advantage of these particular bounds is their simplicity of computation. Expected

profits and thus entry decisions can be computed directly from the data, and then total

surplus can be computed using the estimated demand model for the set of products that

enter. How informative these bounds will be depends on the size of trial costs relative to the

distribution of product qualities in the data. The bounds will be equal to each other and the

full equilibrium model at T c = 0 (the case of no US trials beyond EU requirements), then

diverge as increasing entry costs drive a wedge between the entry assumed in the bounds

and the entry that would obtain in a full equilibrium.

23Our bounds approach relies on necessary conditions from theory that are easy to compute from the
data and demand model. Reguant (2016) provides a complementary approach to obtaining computational
bounds in cases that are more challenging to compute.

24$1.6M per month from the survey by Makower et al. (2010).
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3.4 Modeling the Regulator’s Tradeoffs

The total surplus equation above captures the primary tradeoff between access and risk:

the longer time T c that products spend in premarket clinical trials, the lower the risk from

uncertainty about product quality in the market σjt, but the fewer new technologies available

in the consumer choice set Jt at any point in time and greater costs of entry. This tradeoff can

be formalized by writing total surplus as a function of time spent in premarket clinical trials

and considering the marginal return to increasing the amount of time spent in premarket

testing to T c + 1 over any time period t = 1, ..., τ :

TS(T c + 1)− TS(T c) =
τ∑
t=1

Mt

θp
ln

(∑
j∈Jt(T c+1) e

δjt(T
c+1)∑

j∈Jt(T c) e
δjt(T c)

)
(8)

+
∑

j∈Jt(T c+1)

πjt(T
c + 1)−

∑
j∈Jt(T c)

πjt(T
c)− φe |J e

t (T c + 1) \ J e
t (T c)| .

From the regulator’s perspective, the optimal trial length sets (8) to zero.

One way to clearly see the tradeoff between access and risk as a function of trial require-

ments is to consider a simple scenario where there is no observational learning, no direct cost

of trials, and no affect of price on total surplus. In this case, the per-period marginal return

to increasing premarket testing simplifies (proof in Appendix A.2) to:

TS(T c + 1)− TS(T c)

τ
=
ρ

2
(σ2

T c − σ2
T c+1)−

1

τ
ln

(∑
j∈Jτ (T c) e

Qjt−γ ln(|Jt|)∑
j∈J0(T c) e

Qjt−γ ln(|Jt|)

)
. (9)

The first term captures the per period utility gain from decreased risk (and is determined

by the unconditional uncertainty in product quality σQ and the rate of learning in trials

σAc). The second term captures the total surplus generated by the rate of technological

improvement in product quality over time (which will be determined by the rate of drift in

product quality over time Qt and the expansion of variety in the choice set Jt).

3.5 Model Predictions to Take to the Data

The model has several testable implications that we can take to the data. In order to map

the model into the data, we match the choice probabilities implied by utility maximization

to the market share data, and invert the system as in Berry (1994) to recover the mean

utility estimates for each product in each month:

ln(sjt/s0t) = δjt := Qjt − θppjt −
ρ

2
σ2
jt − γ ln(|Jt|) . (10)

The model then implies the following (proofs in Appendix A.3):
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Prediction 1 (Learning): If initial product quality is uncertain (σ2
Q > 0), then learning

(1/σ2
A > 0) implies that volatility in product-specific quality estimates converge by

decreasing with age (Ej|δja − δja+1| ↘a→∞ 0 or V arj(δja)↘a→∞ σ2
Q).

Prediction 2 (Risk Aversion): If consumers (doctors making decisions on behalf of their

patients) are risk averse (ρ > 0), then expected product usage, conditional on age, will

increase as learning occurs (Ej[δja]↗a→∞ Q).

The summary statistics and reduced-form analysis in the next Section will use these

predictions in exploring how much more stringent the US regulatory policy actually is relative

to the EU, and the implications for learning, risk, and access in the market.

4 Data and Reduced Form Analysis

The primary data set used in this study consists of quantities and prices at the product-

hospital-month level, collected by Millennium Research Group’s (MRG) MarketTrack inter-

national survey of hospitals from 2004-2013. This survey, covering approximately 10 percent

of total market activity, is the main source of detailed market intelligence in the medical

device sector. Its goal is to produce representative estimates of product market shares and

prices by region. Importantly, MRG also tracks the number of diagnostic angiographies, pro-

viding the number of patients potentially eligible for a stent in each hospital-month. In our

analysis, we aggregate the data to the region-month (US and EU) level to obtain accurate

measures of market entry and usage of each device within a region, which is the relevant

unit of observation for this study.25

As mentioned in Section 2, to our knowledge, high quality data on post-market device

performance does not exist. The lack of such data is the topic of the policy debate regarding

“post-market surveillance” that we analyze in Section 6. We believe usage data to be the

next best thing because it captures, via revealed preference, the state of market knowledge

of physicians across products and over time.

We supplement the detailed market data with our own searches for product approval

dates in the EU and US in order to validate data coverage within our sample and also

to determine the time in market for products that enter outside of our sample period. In

addition, we also collected clinical trial data (when available) from various journal articles,

conference abstracts, press releases, and product catalogs. These provide further evidence

25As we are analyzing second generation stents, reimbursement policies have already be determined so
that these region specific differences are not a consequence of difference in the timing of payment approvals.
We also prefer the EU region vs. country analysis because it provides more precisely measured market shares,
which are important for our demand model. Appendix D.3 shows variation in data and our estimates across
countries within the EU, and Appendix D.4 shows the same within hospitals.
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regarding the size and length of trials required for US versus EU entry. They also provide

product TLR and MACE rates which we use to validate our revealed preference estimates

of quality.

Table 1: US and EU differences in clinical trials and market structure.

US EU
Clinical trial data:
Percent of stents with publish clinical trials 45 16
Mean clinical trial size (patients) 1252 471
Mean clinical trial length (months) 32 11

Market structure data:
Mean manufacturers in market 4 (3) 21 (5)
Mean products in market 11 (5) 39 (8)
Total products in market 2004-13 21 (11) 109 (22)
Mean months from EU to US entry 10 -
Mean months from EU to US entry (DES) 17 -
(Usage within hospital in parentheses.)

The top third of Table 1 presents summary statistics for our clinical trial data. We

were able to find such data for 45 percent of the products entering the US and 16 percent

of the products that enter the EU only. Conditional on publishing a clinical trial online,

EU trials are shorter and enroll fewer patients: On average, US clinical trials enrolled over

1,200 patients and lasted almost 3 years, while the EU-only products enrolled a third of

the patients and the trials were 66 percent shorter in duration. This large difference in trial

patterns would be expected based upon what we know about testing requirements in the two

regions. That it persists in the available testing data demonstrates that private incentives

do not generate further testing, making regulatory requirements binding and potentially

important.

The bottom two thirds of Table 1, and also Figure 1, show how these pre-market testing

requirements are correlated with market structure and product usage in the US and the EU

over our sample period. The EU has over three times as many manufacturers and products

as the US (and still nearly two times as many when measured at the hospital rather than

region level) . For those products that eventually enter the US, the average lag between EU

and US introduction is 10 months (17 months for the more technologically advanced DES).

Many of the products to which the EU has greater access are frequently-used: In the average

month, 49 percent of the stents used in the EU are unavailable in the US at that point in

time, and 23 percent will never be available in the US.

These basic clinical trial and market structure data illustrate the tension between the

two regulatory approaches: The EU enjoys greater access to a broader variety of devices and

these devices are available earlier than in the US. However, EU consumers have less testing
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Figure 1: EU market share of products not available in US.
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on the quality of these products. The goal of our analysis will be to resolve this tension and

determine, for our sample of coronary stents 2004-13, whether the extra US testing provides

information that the market values in terms of decreasing risk, the extent to which there

is observational learning outside of clinical trials, and the value of access to more products

earlier in the EU.

4.1 Evidence: Information, Learning, and Risk Aversion

Figure 2 begins to explore whether EU consumers bear more risk than those in the US

by introducing a larger number of devices earlier in their life cycles with less information

imparted about the quality of those devices. Panel (b) plots mean absolute differences of

the mean utility estimates over time, 1
Ja

∑
j | ln(sja/s0a) − ln(sja+1/s0a+1)|. As highlighted

in Prediction 1, when consumers learn this value should asymptote toward zero as learning

moves the quality estimate, Qja, toward true quality, Qj. This statistic is decreasing in

the EU and constant over the product lifetime in the US (though the difference of these

differences is noisily estimated).26 The gap remaining between the US and EU at a = 24

could be due to differences in the product mix or incomplete learning.

Panel (a) shows that in the EU the mean across products of a given age of the mean utility

estimates 1
Ja

∑
j ln(sja/s0a) is lower upon introduction and gradually increases with age,

plateauing after approximately two years in the market. This is consistent with Prediction

2 of our theory regarding learning in the presence of risk aversion. Again, the pattern in the

26Month-to-month volatility is our preferred measure of learning for exposition because it is tightly linked
to theories of convergence and decreases to zero with full learning about a fixed parameter. Appendix D.1
shows similar results for the standard deviation across products. Appendix B.2 provides further details on
heterogeneity (good news and bad news) in the effect of learning on usage patterns at the product level
which are concealed by the average patterns reported here.
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Figure 2: Raw data comparison: EU vs. US.
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(b) Meanj|a |∆t ln(sjt/s0t)|
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0 12 24
Age Since Introduction to Region (Months)

EU US

xa=1 xa=24 x24 − x1 (xEU24 − xEU1 )− (xUS24 − xUS1 )

MeanEUj|a ln(sjt/s0t) -7.48 -6.15 1.33 1.55

(0.24) (0.27) (0.38) (0.55)

MeanUSj|a ln(sjt/s0t) -3.74 -3.96 -0.21

(0.28) (0.37) (0.46)

MeanEUj|a |∆t ln(sjt/s0t)| 0.79 0.58 -0.21 -0.16

(0.07) (0.08) (0.11) (0.13)

MeanUSj|a |∆t ln(sjt/s0t)| 0.21 0.17 -0.04

(0.05) (0.06) (0.07)

N = 1747 product-month-region observations. Standard errors clustered by month Nt = 114 in parentheses.

US is different. There the mean of the mean utility estimate does not vary with product

age and is higher on average. That the mean utility gap remains between the US and EU at

a = 24 suggests the product mix in the US is of higher quality, but this particular comparison

can not rule out the possibility of different preferences across the two regions.

The patterns in the raw data in Figure 2 are consistent with our model predictions of

learning by risk averse consumers while products are on the EU market. However, one

might be concerned they are also potentially consistent with several alternative mechanisms:

drivers of product diffusion other than learning, observational learning flowing from the EU

to US, and product selection on uncertainty or on quality via early exit. Figures 3 and 4 rule

out these alternatives in favor of the mechanism of EU learning through US clinical trials.

These figures are constructed after controlling for product fixed effects, so that all pat-

terns are driven by within-product variation over time. In particular, this rules out any

composition effect whereby increasing usage with product age is driven by worse products

exiting the market at a younger age.

Figure 3 compares patterns for the exact same products marketed in both the EU and
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Figure 3: Same products, EU vs. US.

(a) Meanj|a ln(sjt/s0t) (within product)
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(b) Meanj|a |∆t ln(sjt/s0t)|
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EU (enter US) US

xa=1 xa=24 x24 − x1 (xEU24 − xEU1 )− (xUS24 − xUS1 )

Mean
EU |trials

j|a ln(sjt/s0t) -5.36 -4.06 1.30 1.39

(0.27) (0.09) (0.28) (0.29)

MeanUSj|a ln(sjt/s0t) -3.88 -3.96 -0.08

(0.12) (0.14) (0.18)

Mean
EU |trials

j|a |∆t ln(sjt/s0t)| 0.71 0.27 -0.43 -0.39

(0.18) (0.05) (0.19) (0.20)

MeanUSj|a |∆t ln(sjt/s0t)| 0.21 0.17 -0.04

(0.05) (0.06) (0.07)

N = 697 product-month-region observations. Standard errors clustered by month Nt = 114 in parentheses.

US. The fact that mean of mean utility estimates in panel (a) is flat in the US rules out that

the increasing usage with age is driven by marketing, sales or distribution efforts that are

specific to product launch in a new region—if it were such a non-learning diffusion story the

US would exhibit a similar pattern (and the learning effect could still be estimated as the

difference between the shapes of US and EU curves, assuming learning is complete by the

time products reach the US). Panel (b) again plots mean absolute differences, which which

in the EU starts near 0.8 logit utils and converges fairly rapidly over the first 6-12 months

on the market before leveling off around 0.2 (that it does not asymptote to 0 suggests either

incomplete learning or some unobservable source of noise in the product usage data that we

have not modeled). By contrast, in the US this same quantity stays level at 0.2 the entire

time after introduction. That the volatility and mean usage in the EU converge to US levels

when we restrict the sample to the same products in both regions is consistent with learning

occurring during the time these products are in the EU, and risk-averse users responding

to this learning. Figure 4 explores whether the source of this learning is from observational

usage in the EU or from US clinical trials.
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Figure 4: EU only, products in trials vs. not.

(a) Meanj|a ln(sjt/s0t) (within product)
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EU (in trials) EU (not in trials)

xa=1 xa=24 x24 − x1 (xEU24 − xEU1 )− (xUS24 − xUS1 )

Mean
EU |trials

j|a ln(sjt/s0t) -5.37 -4.06 1.30 0.66

(0.27) (0.09) (0.28) (0.34)

Mean
EU |not

j|a ln(sjt/s0t) -7.83 -7.19 0.64

(0.13) (0.14) (0.19)

Mean
EU |trials

j|a |∆t ln(sjt/s0t)| 0.71 0.27 -0.43 -0.36

(0.18) (0.05) (0.19) (0.25)

Mean
EU |not

j|a |∆t ln(sjt/s0t)| 0.81 0.73 -0.08

(0.08) (0.12) (0.15)

N = 1430 product-month observations (all in EU). Standard errors clustered by month Nt = 114 in parentheses.

Figure 4 compares products in the EU that (1) undergo clinical trials for US release (a

set that is the same as the EU products that eventually enter the US shown in the previous

figure, plus a few products that undergo US trials but are not introduced to the US); and

(2) that never undergo trials beyond those required for EU introduction. The results show

that all of the evidence of learning is driven by those products in US clinical trials. Both

mean absolute differences in panel (b) and mean of mean utilities in panel (a) are flat for

products not in trials, which not only rules out observational learning for these products,

but also rules out diffusion driven by marketing, sales, or distribution of new-to-the-world

products. The pattern of mean absolute differences also refute the argument of selection on

uncertainty, as the EU products not in trials begin near 0.7 (the same as the products in

trials), but remain flat near 0.7 over time, suggesting that there is plenty of uncertainty for

these products, but no learning.

This last point is especially important because identification of a causal effect of learning

from US clinical trials requires that unobservable factors driving product entry decisions into
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the US are uncorrelated with the “amount to learn” about the device from clinical trials.

The patterns in the last three figures offer empirical evidence that this condition is satisfied

as US trial participation is correlated with higher expected quality (which we can control for

using product fixed effects), but it is uncorrelated with uncertainty about that quality level

(as measured by volatility in usage patterns).

4.1.1 Robustness of the Learning Evidence

We perform a series of robustness analyses and all of them confirm our basic findings that US

trials generate risk reducing information that is valued by consumers and there is very little

observational learning. These results are presented in detail in Appendix D and summarized

here. First, we examine the possibility of differential selection into the US by reformulating

Figure 4 for a set products that do and do not undergo US testing, and also have overlapping

support on initial quality estimates at aj = 1. Because all of these products have the same

initial quality level, identification is based on level shifts in expected US profit due to the

fact that those products that enter the US all have pre-existing complementary assets for

sales and distribution (while those that don’t enter do not). The pattern is essentially

identical to that in Figure 4, indicating that our results are not driven by selection on initial

quality/usage levels.

Next, we examine the impact of aggregating our analysis across all EU countries and

hospitals. We perform our analysis country-by-country, and the conclusion that there is

significant learning from US trials but little observational learning again holds. We also

perform our analysis at the hospital level. Here the estimates are noisier (which is expected

due to sampling variation for niche products and the fact that usage is conditional on hospital

contracting and preferences), but again our main conclusions hold.

Finally, we perform a placebo test using percutaneous transcatheter coronary artery

(PTCA) balloons, which face similar regulatory requirements in the EU and US, and thus

should not display the differential signs of learning we document for stents if our proposed

mechanism is true. The results show that we do see more total entry in the EU (presumably

due to pre-existing complementary sales and distribution assets in the US for some manu-

facturers), but the differences in amount of entry are smaller than in stents, and there is no

gap in time of entry on average. Most importantly, the usage patterns with age show no

evidence of learning for PTCA balloons.

4.1.2 Empirical Test of Symmetric vs Asymmetric Information

Figure 5 offers further checks that the data is consistent with a model of learning over time

with symmetric information between manufacturers and consumers. Here we focus only on
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those products in the EU that are undergoing clinical trials (the products with evidence of

learning). We present different quantiles of the ln(sjt/s0t)|a distribution. Under symmetric

information, the distribution of product quality estimates should converge symmetrically

to the true product quality distribution with the arrival of new information. In an asym-

metric information setting, consumers do not receive direct information about quality, but

instead infer quality must be above some threshold if a manufacturer is willing to continue

with costly testing (see Appendix D.6 for more on this intuition). Learning in this way will

cause the lower tail of the distribution to become truncated. Consistent with the symmetric

informational framework, it is clear that the 25 and 75 percentiles appear to move symmet-

rically towards the median as information arrives. Below the figure, we present relevant test

statistics. The change in the skewness of the distribution and the change in the ratio of the

75th-50th percentile to the 50th-25th are both insignificant.

Figure 5: Symmetry of changes in quality distribution (in EU; US trials).
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N = 383 product-months (in EU; US trials). Standard errors clustered by month Nt = 114 in parentheses.

4.1.3 CoStar Case Study and the Role of Bad News

The focus on averages across products thus far obscure the fact that information is not

always good news for a product. The arrival of bad news will obviously reduce the posterior

uncertainty, but it will also reduce the posterior mean quality estimate. Appendix B.2

provides more individual product summary statistics demonstrating these up and down
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dynamics. Here we focus on a clear example of the impact of bad news. A small firm named

Conor Medsystems developed a drug-eluting stent with an intuitively appealing new design

for drug release that performed well in small early trials (CoStar I (87 patients) and EuroStar

I (149 patients)), which were received enthusiastically at conferences in late 2005 through

2006. During this period, pivotal US trials were begun. The stent saw growing market share

after receiving a CE mark and being released in the EU Feb 2006.27 In Nov 2006, Johnson

& Johnson was sufficiently optimistic about CoStar to buy Conor for $1.4B. J&J took over

CoStar’s pre-market notification submission to the FDA. In May 2007 J&J announced the

results of a large US trial (CoStar II (1675 patients)), where safety evidence was good but

efficacy was disappointing with TLR rates 8% for CoStar versus 4% for its competitor and

the control stent, Taxus. Shortly after, J&J announced that it was terminating its FDA

mandated clinical trails as the stent was failing to meet its primary endpoints.28

Figure 6: Evolution of ln(sjt/s0t) for CoStar.
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The CoStar story demonstrates many of the themes of our analysis. CoStar’s usage

rose as early trial results were communicated at physician conferences and it underwent US

trials. As more information was generated via the clinical trial, that information is reflected

in the inclusive share. Presumably J&J shared this optimism and did not possess differential

information, even after due diligence that would have made it privy to the same information

as Conor. And when trial results on efficacy were unfavorable, market share dipped and the

product was pulled from the market.

4.2 Exploring Other US/EU Differences

We have argued that historical political circumstances have led to greater testing require-

ments in the US than in the EU, and that the cost of these different testing requirements

27See http://www.ptca.org/pr conor/20060217.html
28See http://www.investor.jnj.com/releasedetail.cfm?releaseid=241182.
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have led to more and earlier entry in the EU. Further, we have presented evidence that

this differential testing has led to different amounts of information generation, which can be

observed in EU usage patterns.

In theory, these differences in entry and usage patterns could be confounded with other

differences in disease incidence, preferences for angioplasty and stents, or variation in price

setting regimes between the US and EU. However, all the evidence that we have been able to

gather (detailed in Appendix B.3 and summarized here) indicates that these do not plausibly

explain the patterns in the data described above. For example, the 2010 mortality rate in

the US for ischemic heart disease was 127 deaths per 100,000; and the corresponding figure

for the EU is 130 per 100,000.29 This modest differential seems unlikely to account for the

stark differences of entry rates between the two regions.

Prior to performing an angioplasty in which a stent may be inserted, the patient must

undergo a diagnostic angiography to determine whether the patient should receive a stent or

some other medical intervention. If the difference in the number of stents available between

the EU and the US was driven by higher demand for stents, then it should show up in the

data with the EU performing a larger number of angiographies or having a higher rate of

stenting conditional on the angiography rate. In our data, the distributions of the number

of diagnostic angiographies performed and percent of those diagnostic procedures resulting

in stenting procedure are close to identical statistically, with the EU having a few more

small volume hospitals and hospitals that are more likely to place a stent conditional upon

a diagnostic procedure. Like the evidence on heart disease prevalence, this small difference

seems unlikely to explain the large disparity in entry rates between the two regions.

It is also possible that other differences in preferences or willingness-to-pay might make

the EU market more desirable for entry. Figure 12 in the Appendix documents that DES

usage as a percentage of all stents used is lower in the EU but follows similar patterns to the

US over time. The same figure also shows that the prices per stent sold are lower in the EU.

This is likely the result of lower reimbursement levels for stent procedures overall, lower DES

reimbursement levels in particular, and more competing devices in the EU market. These

findings suggest that, conditional upon FDA approval, average variable profit in the US is

higher, actually making it a more attractive entry target than the EU.

4.3 Summary of the Evidence

The evidence from stent entry and usage patterns aligns with our model in which there

is uncertainty about new product quality, learning occurs symmetrically to market players

over time, and risk-averse decision makers factor uncertainty about quality into their product

29OECD Health at a Glance, 2013.
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choice. The results imply that there is significant learning from US clinical trials but very

little learning observationally in the marketplace. This second finding is not surprising given

the lack of systemically collected data on device clinical performance after market entry.

We examine alternative plausible explanations and reject them all. Specifically, the pat-

terns we observe are not consistent with differential marketing/diffusion, differential demand

side factors, differential prices and lags in reimbursement determination, or selection into

testing based on uncertainty.

5 Structural Identification, Estimation, and Results

The statistics presented in Section 4 align with the predictions of the model developed in

Section 3 and suggest that the EU is indeed less stringent than the US in regulating the

entry of new medical devices. In this Section we estimate the parameters of our model in

order to better understand and quantify welfare implications. Using the data from the EU

2004-13, we estimate the distribution of product quality for innovations introduced, the rates

of learning in and out of clinical trials, and risk aversion. We then use the estimated model

to explore the access and risk issues separately before combining them in counterfactual

analyses of optimal regulatory policy and post-market surveillance.

5.1 Identification and Estimation of Learning and Demand

The parameters of the utility function—and by extension the parameters of the device quality

distribution and learning process—can be identified and estimated by a revealed preference

assumption and data on device market shares in each month. We follow Berry 1994, set-

ting the choice probabilities implied by utility maximization equal to the market shares in

the data, inverting the system to be linear in mean utilities, and adding the econometric

unobservable term ξjt:

ln(sjt/s0t) = δjt := Qj − θppjt −
ρ

2
σ2
jt − γ ln(|Jt|) + ξjt. (11)

We use variation over time and across products in the first and second moments to estimate

the product qualities Qj (and from those the mean Q and variance σ2
Q of the product quality

distribution), the signal variances σ2
A and σ2

Ac , the risk aversion parameter ρ, the price

sensitivity θp and the Ackerberg-Rysman congestion term, γ.
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5.1.1 Identification of learning and demand

A simple and semi-parametric way to estimate Equation (11) would be to regress the inclusive

shares ln(sjt/s0t) on product and age fixed effects interacted with whether a product is in

clinical trials or not to allow for differential learning rates. In this research design, the

age fixed effects—paired with the exogenous variation in learning—would then capture the

combined treatment effect risk aversion and learning on utility. However, because we are

interested in questions that involve market reactions to different learning rates and levels of

risk, we need to add structure via the learning model to disentangle these forces. Comparison

to the fixed-effect model in Appendix D.7 provides a useful benchmark for assessing the fit

of the more parsimonious and parametric learning model.

As with all learning models, the identification of the signal precision depends on fitting

the model to the shape of how choice behavior changes with the age of the product. The risk

aversion parameter is then identified as the multiplicative shifter that best fits that shape

to the observed choices. In our simple learning model, identification is even clearer because

learning is identified by the fact that volatility in product-specific quality estimates decreases

over time. Risk aversion is then identified by how choice probabilities increase (or don’t) as

learning decreases uncertainty.

This relates directly back to the reduced form evidence in Figure 4: For products in

trials, the volatility decreases with age, identifying learning. As this variation decreases,

the mean inclusive share increases, identifying risk-aversion. The fact that volatility is large

and constant for products not in trials identifies a lack of observational learning. These

parameters are identified using the within-product variation, conditional on the product

fixed effects (whose parameters provide estimates of the product qualities Qj). The causal

interpretation of learning from trials is based on the fact that selection into US trials appears

to be based upon the level of expected US profits, not the amount of uncertainty about

product quality.

5.1.2 GMM estimation algorithm

We implement the estimation based on the above intuition via a generalized method of mo-

ments algorithm, detailed in Appendix C and summarized here. For a given set of parameter

estimates we construct empirical analogs of the product residuals, ξjt = ln(sjt/s0t) − Qj −
θppjt − ρ

2
σ2
jt − γln(Jt). The estimator finds the parameters that set the empirical analog

of E(ξ′Z) = 0. The instruments are Zjt = (1j, (
1
ajt
, 1
a2jt

), (pjt−1,
∑

k 6=j pkt−1), ln(Jt)) where

( 1
ajt
, 1
a2jt

) are the instruments for volatility with age and (pjt−1,
∑

k 6=j pkt−1) are the instru-

ments for price suggested by Grennan (2013) to capture price variation due to sticky contracts

and changes in the competitive environment.
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The key difference between our algorithm and the standard demand estimation algorithm

is that in addition to matching the first moments of the model choice probabilities and market

shares, we also need to match the second moments of quality uncertainty σjt in the model

to the volatility in the data. We do this by fixing σjt|a=1 equal to the standard deviation of

Qjt|a=1 and using the learning model to predict the full sequence {σjt}.
Finally, we use the empirical distribution of the product fixed effects estimated from the

EU data to estimate the mean Q and variance σ2
Q of the distribution of product qualities

developed. This amounts to an assumption that all products that a firm might want to

introduce to the market are in fact introduced in the EU. This is plausible as the EU has

some products with very low market shares and profits (see Appendix B.4 for more on

the distribution of profits for EU entrants), suggesting that the fixed cost of EU trials and

introduction (conditional on having already developed the innovative product) are quite low.

5.2 Resulting Parameter Estimates

The parameter estimates from the model are presented in Table 2. The first observation is

that there is meaningful underlying variation in product quality that exposes consumers to

risk—at σQ = 1.24 the variation in product quality is nearly as large as the match-specific

logit standard deviation of π/
√

6 = 1.28. Thus without information, consumers selecting a

new product for insertion face a significant probability that the product is significantly worse

than the mean product quality.

Table 2: Structural parameter estimates of demand/learning model

Q σQ 1/σ2
A 1/σ2

Ac θp ($1000s) ρ γ

-5.02 1.24 0.01 0.70 0.25 4.54 0.12
(0.081) (0.002) (0.001) (0.024) (0.013) (0.123) (0.022)

N = 4490 product-months. Standard errors clustered by month (NT = 114).

The second observation is that, consistent with the reduced form evidence, learning rates

vary dramatically according to whether the product is in an FDA required clinical trial or

not. The parameter estimates indicate that there is virtually no experiential market learning

occurring—the estimate of 1/σ2
A is an economical zero. By contrast, the precision of clinical

trial learning 1/σ2
Ac is 0.70, corresponding to approximately 18 months of clinical trials for

learning to exceed 95 percent completeness.

The estimate of the price parameter is correctly signed though economically very small

and similar to an appendicized demand system similar to ours in Grennan (2013) using

US data 2004-07. The Ackerberg and Rysman parameter, γ, is also correctly signed and

significant. Its magnitude implies that the logit assumption without this correction only

modestly overstates the value of product variety.

29



5.2.1 Validation of model estimates

Risk-aversion: The model estimates provide several opportunities for validation with other

data and research. One such comparison we find particularly reassuring is that the implied

coefficient of risk aversion aligns with estimates of this parameter from the literature. Con-

verting the estimate of ρ into a dollar equivalent by normalizing the total surplus per stenting

procedure to $5,000 (the estimated dollars in quality adjusted life years from the procedure

relative to CABG), then the estimated risk aversion parameter is ρ$−1 = 0.99 · 10−3.30 This

is within the range of estimates of risk aversion in well-designed studies such as Cohen and

Einav (2007).

Added values and prices: Another opportunity to validate our model with external data

is to compare the price data to the added values implied by our estimated demand model,

AVj := TS(J )−TS(J \{j}), the increase in total surplus from adding each product j to the

choice set. Our estimates imply an average (quantity-weighted) added value of $4629. This

can be compared to average price of $824 in the EU in our sample. Models of negotiated

prices such as the Nash Equilibrium of Nash Bargaining used for stents in Grennan (2013,

2014) suggest that price should be equal to marginal cost plus a markup where the supplier

receives a fraction of the added value that depends on his bargaining parameter vs. the

bargaining parameter of the buyer. Though we do not specify a full supply side model,

for the purpose of comparing our demand estimates to prices, we calculate that setting

costs equal to the lowest observed price of $168 implies bargaining splits where the supplier

captures on average 14 percent of the added value. This is on the lower end the range

estimated in Grennan (2013, 2014) for the US stent market 2004-07, but seems plausible

with decreasing prices over time and lower EU procedure reimbursements.

Qj and clinical trial data: Finally, in our model, consumers formulate beliefs of quality

of each stent, Qj. We can compare these estimates from our model to the stent performance

estimates in clinical trials for the 21 products for which we have trial data. For this analysis

we focus on target lesion revascularization (TLR) rate but the same pattern also holds for

MACE. Figure 7 panel (a) presents the scatterplot of Qj versus TLR. Reductions in TLR

correspond to better performance. Our measure of vertical stent quality is strongly and

negatively correlated with the clinical quality measure, providing another piece of evidence

on the validity of our estimated model.

30We could also scale into dollars using the standard approach of the inverse of the price coefficient
1
θp = 4057, which comfortingly implies a similar total surplus per procedure of $4,431. However, our
estimated price coefficient is always economically small with the precise point estimate dependent on the
specific demand model. Thus we take advantage of the fact that like many medical technologies, the procedure
of angioplasty with a stent has been subject to numerous studies attempting to value the average quality
adjusted life years added by the procedure in dollar terms. Source: Cost Effectiveness Analysis Registry
(https://research.tufts-nemc.org).
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5.3 Access: Rate of Technological Change

The rate of technological change is an important determinant of the optimal regulatory

policy because it affects the value of access to the newest devices relative to those already

available. We can compute the rate of technological change by calculating the ex post average

treatment effect (ATE), i.e. the mean surplus (relative to the outside option) of having a

stent implanted, ln(
∑
Jt e

Qj). Figure 7 panel (b) presents these results. The top line is

the mean consumer surplus per patient receiving a diagnostic angiography. Between 2004

and 2013, there is a meaningful increase of 9.6 percent in the utility consumers receive from

access to coronary stents. Interestingly, though, the mean value to consumers of each new

product at the time of its introduction, ln(1+eQj), (the bottom line in the figure) is flat over

our sample period. This implies that the value of access in coronary stents during this time

period is driven more by the increase in the variety in the choice set rather than increasing

average product quality (relative to the next best alternative treatment) over time.31

Figure 7: Clinical Quality, Revealed Quality, and Technological Change.
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This finding is salient for the analysis of the optimal regulatory policy. If technological

change is driven by increases in average product quality, changes in the regulatory standards

of evidence will likely have a smaller impact on welfare than if the change is, as we find here,

driven by increases in product variety. This is because niche products will by their nature

have smaller market opportunities and thus find it more difficult to incur the fixed cost of

greater testing.

31This is likely due at least in part to the increasing quality of alternative treatments, particularly less-
invasive and beating-heart CABG, during this time. See Kalyanasundaram and Karlheinz (2014) for an
overview.
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5.4 Risk: Uncertain Quality and Market Outcomes

The potential welfare gain from access to new products is in tension with potential welfare

loss due to the risk that those products may not be as effective as expected. The magnitude

of this risk effect depends upon the mean quality level, the variance in that quality level,

and the amount of information consumers possess.

Table 3 explores the role of uncertainty in the market by using the demand model to

calculate total surplus per stent TS
1−s0 and the percent of patients undergoing a diagnostic

angiography who choose a stent over the outside good (1− s0). Here we posit hypothetical

markets where all products have uncertainty in their quality, varying from the uncondi-

tional variance of the quality distribution σ2
Q (if there were no testing/learning at all), to

the estimated uncertainty upon first entering the EU σ2
aEU=0 (after undergoing EU testing

requirements), to varying lengths of US trials σ2
T c . In order to focus purely on the role of

uncertainty, this is a partial equilibrium analysis in that we do not consider firms’ strategic

responses to these different parameters.

Table 3: The effect of uncertainty and mean quality on surplus per stent and
the total number of stenting procedures. First set of rows for estimated quality
distribution in the data, and also for the actual EU data (which has average uncertainty

σ2jt|EU = 0.29, similar to that of T c = 3.2 months of US clinical trials). The subsequent
two sets of rows shift the product quality distribution one standard deviation of the logit
distribution π/

√
6 = 1.28 in each direction. All estimates differ at 95 percent confidence

level except T c = 18 and T c = 24 (s.e. suppressed for readability).

σ2
Q = σ2

aEU=0 = σ2
Tc=6 = σ2

Tc=12 = σ2
Tc=18 = σ2

Tc=24 = σ2
jt|EU =

1.51 0.80 0.18 0.10 0.07 0.05 0.30

Q = −5.02: TS
1−s0

($) 4625 4830 5468 5620 5685 5722 5000

1− s0 (%) 2 10 30 34 36 37 24

Q = −6.30: TS
1−s0

($) 4591 4650 4850 4901 4924 4937

1− s0 (%) 1 3 11 13 14 14

Q = −3.74: TS
1−s0

($) 4746 5407 7084 7429 7574 7653

1− s0 (%) 7 29 61 65 67 68

Table 3 makes several important points. First, holding the strategies of the firms constant,

the stent market would fail without any learning. This can be seen in the first column of

the table in which the percentage of consumers having a stent implanted is close to zero

for all values of Q. Clinical testing provides the necessary information to make this market

operate.

Second, increasing the information available to consumers by a modest amount generates

significant improvements in welfare. Moving from a world in which there are no clinical trials

to one in which there is a FDA required clinical trial of 6 months leads to large increases in

the number of procedures performed and the surplus created per procedure. Increasing the

trial length another 6 months generates smaller increases.
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Third, the impact of information is dependent upon the mean quality levels of the stent

distribution. In particular, the higher the quality of the average stent, the more valuable

is clinical trial information. At first blush, this is somewhat counterintuitive as one make

think that if the mean stent is of low quality, avoiding that stent would generate significant

improvement in welfare. However, the converse is also true. If the average stent is of high

quality, the greater gain to selecting the right stent ex post and thus the more valuable is

clinical trial information in our setting.

Note that all of these effects are driven by symmetric yet imperfect information and not

by informational asymmetries which have been the central concern in much of the quality

information literature. This suggests that in the case of regulating testing/disclosure, taking

into account risk-aversion and the amount of information provided can be just as important

as solving asymmetric information problems.

6 Welfare Implications of Regulatory Policy

With the model and estimated structural parameters, we can examine the impact of different

regulatory regimes on welfare. There is a longstanding debate over the appropriate device

approval and clearance policy for medical devices which our estimates can help inform. We

examine two different dimensions that could be influenced by regulatory policy: (1) the

amount of information T c that device manufacturers need to generate prior to marketing

their products and (2) the precision of observational post-market learning 1/σ2
A. While the

parameter values we explore are within the support of the EU and US data, the role of

the model is in predicting the equilibrium responses of firms and consumers at intermediate

values that we do not observe. As discussed in Section 3.3, we use relatively weak supply

side assumptions to place upper and lower bounds on implications from a full equilibrium

model.

6.1 Optimal Premarket Clinical Testing

Here we address a fundamental question facing any industry where new products are devel-

oped with uncertain quality: How much testing is enough?

Figure 8 plots our upper and lower bounds on expected total surplus versus the required

length of time spent in clinical testing (relative to the current EU required clinical testing).

Using these to then bound the optimal regulatory policy suggests that the optimal tradeoff

of access vs. risk is reached between T ∗c = [7, 18] (95 percent CI [6, 19]) months of premarket

clinical testing. The width of these bounds is driven in part by the fact that the estimated

total surplus is relatively flat for a wide range of trial lengths near the optimum.
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Figure 8: Optimal Regulation: Red lines provide bounds on TS(T c). Blue vertical
lines indicate the identified set of optimal trial lengths T c. 95 percent confidence intervals,
clustered by month, provided by dotted lines.
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Outside of the flat range, however, surplus drops rapidly with zero month trials resulting

in a nearly 100 percent drop relative to the optimal. At first this seems to suggest that the

EU could make extremely large welfare gains by increasing its standards—until one realizes

that the EU is able to free-ride off of the information being generated in trials for US entry.

This makes the risk faced in the EU closer to a market with US trials of approximately 3.2

months. Thus, conditional on the US regulatory policy, the gain to the EU from increasing

its standards is more modest but still substantial at 20 percent or more.

Recall that in our data the mean lag between US and EU entry is 10 months for all

products and 17 months for DES. That is, we find that the current FDA policy for stents falls

within our confidence interval for the optimal policy conditional on the rate of observational

learning. This result speaks directly to the current policy debate over the FDA medical device

approval pathway and supports the FDA argument that reductions in their standards for

device approval will reduce consumer welfare. Though of course we are comparing a different

time and product market, our results stand in contrast to the Peltzman (1973) influential

analysis of the 1962 Kefauver-Harris Amendments to the Food, Drug, and Cosmetic Act

which required proof of efficacy and made the testing procedures required to prove that

efficacy subject FDA oversight. He concludes that the Kefauver-Harris Amendments led to

a significant decrease in welfare. Peltzman’s analysis, however, does not speak to the optimal

informational requirements pharmaceutical manufacturers should face when introducing a

new molecular agent. To the best of our knowledge, the our analysis is the first that provides
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an estimate of the optimal policy on the amount of information creation.

6.2 Valuing Increased Post-market Learning

One frequently proposed change to FDA regulatory policy is to relax requirements on pre-

market clinical trials but increase requirements on post-market surveillance, including data

collection, analysis, and reporting. This policy has a direct connection to our model in

the sense that its intention is to increase the rate of post-market approval learning—in the

language of our model, this means increasing the precision 1/σ2
A of the signals that arrive

outside of FDA required clinical trials. We estimated the post market learning rate is effec-

tively zero for the set of products in our data. There are several potential reasons for this:

For some products, observational learning from real world use may make it difficult to infer

product quality (not having the randomization into treatment and control as in a clinical

trial). For other products, though—and likely for those in our sample—the problem is simply

a lack of systematic data collection and sharing of information. We analyze the potential

of this policy by taking the estimated model, varying σA, and calculating the corresponding

optimal trial length T ∗c (σA) and total surplus generated TS(σA, T
∗
c (σA)). Figure 9 displays

the results, again using our bounds to generate a partially identified set of predictions.

Figure 9: The Value of Post-Market Surveillance: Plots of optimal trial length (left
panel (a)) and total surplus (right panel (b)) as observational learning precision 1/σ2A varies
from zero to the clinical trial precision 1/σ2Ac . 95 percent confidence intervals, clustered by
month, provided by dotted lines.
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When observational learning is as fast as clinical trial learning, there is no reason to

run trials at all (in a symmetric information world). Total surplus is increased—up to 24

percent higher than with no observational learning—because there is no longer a tradeoff
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between access and learning. The value of this increase is large. Using baseline estimates of

utilization and a value of $5000 per treatment yields an estimate of $0.76 billion per year in

increased welfare from this increase in post-market learning.32

Before reaching this extreme, as the precision of observational learning decreases (relative

to clinical trial learning), it becomes optimal to require longer clinical trial periods prior to

market access in order to take advantage of the faster learning rate of clinical trials. The

lesson from this policy experiment is that there is merit to the argument that a requiring

shorter trials with post-approval testing could improve consumer welfare. However, the

gains from this policy critically depend on the rate and cost of learning via post-market

surveillance.

6.3 Discussion and Implications

As discussed in the Introduction, there is an important literature measuring the optimal

regulatory policies across settings as diverse as pharmaceuticals (Filson 2012; Budish, Roin,

and Williams 2015), liquor distribution (Seim and Waldfogel 2013; Miravete, Seim, and

Thurk 2014), and water management (Timmins 2002). In general, the estimates show that

the regulator’s behavior departs from the socially optimal policy by anywhere from 10 to

50 percent. Three of our main results add to this literature: First, to the best of our

knowledge, our work is the first to find a regulator (the FDA, for coronary stents 2004-13)

whose policies may in fact be maximizing total surplus. Second, our results are consistent

with the previous literature in that we find an EU regulatory regime that is suboptimal. The

EU could meaningfully increase welfare by increasing the informational criteria required to

receive market access. Third, we show that adding another dimension of regulatory policies

that improve market learning and reduce pre-market clinical requirements could dramatically

increase social welfare.

It is important to note that our analysis models the decision to test and enter the mar-

ketplace, holding the new technology arrival process fixed and abstracting from the feedback

effects of regulatory approval regime on firms’ incentive to invest in the rate and direction of

new product discovery. However, an important message from our analysis is that the value

of a technological innovation to the marketplace depends to a large extent on the regulatory

regime’s informational requirements for product testing. In fact, our estimates of the value of

information for medical technologies is large and comparable in magnitude to the estimates

of the value of innovation itself. The welfare implications of medical technology innovation

has long played a central role in health economics, but there is much less of an emphasis

in the literature on the value of information regarding these new technologies. Murphy and

32In 2009, over 640,000 stent procedures were performed in the US (Auerbach, 2012).
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Topel (2006) show that medical technology innovation has lead to massive improvements in

welfare over the twentieth century. They find gains on the order of $1.2 million per rep-

resentative American in 2000. More recently, Budish, Roin, and Williams (2015) estimate

that increasing effective patent lengths for cancer drugs would yield an $89 billion increase in

welfare for patients diagnosed in 2003 by inducing more investment in treating cancers where

the effective patent life on new drugs is relatively short. Coronary stents treat a narrower

set of conditions than cancer drugs; but scaled for market size, our finding that increasing

post-market learning rates can increase welfare by nearly a billion dollars per year suggest

that the role of information can be comparable to the role of new technology innovation in

affecting welfare.

Thus a broader lesson from our research is that the innovation process should be con-

sidered holistically from idea to consumer—the value of innovations can be significantly

enhanced or diminished by the information regulators require technology firms to produce

and disseminate. The availability of new medical technologies with uncertain quality can

only achieve their welfare potential if firms undertake the necessary studies to document the

product’s clinical performance. For coronary stents, the market would shut down without

some initial testing as required by the EU and benefits even more from the further testing

required by the US. Thus, there are important complementarities between the value of new

medical technologies and the regulatory approval product regime. Our work provides one of

the first quantifications of that value.

7 Conclusion

The tradeoff between access and risk in regulating the market entry of new products is

important in a variety of industries, and in particular in medical devices, where it is an

active topic of policy debate in almost every country in the world. In this paper we develop

a model with products introduced when quality is still uncertain, learning over time, and

regulator (and manufacturer) decisions regarding product testing and market entry. We

show that the empirical predictions of the model are borne out in market share data in the

US and EU medical device markets and are consistent with the beliefs that the US regulatory

environment is more restrictive than the EU. We then estimate the structural parameters of

the model for use in welfare analysis of policy analyses affecting: (1) the length of clinical

trials required before market entry and (2) observational learning after market entry.

For the set of devices on which we have data, we estimate that clinical testing is critical to

market function. Without any testing, quality uncertainty plus risk aversion combine to keep

most consumers from choosing a stent over alternative treatments. We estimate that the US

is close to the optimal policy in terms of trading off testing versus access to innovation, but
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the EU is too lax (despite free-riding off of information generated by US trials). We also

estimate that if it is possible to achieve post-market learning rates close enough to those we

observe from clinical trials at a comparable cost, then embracing recent calls for more active

“post-market surveillance” could further increase total surplus by as much as 24 percent.

Firms that only enter the EU do not engage in testing beyond that required, suggesting

a wedge between public and private incentives that makes regulatory requirements bind.

Further understanding this wedge would require a fully specified supply side model and

suggests an interesting area for future research.

Of course, our analysis is limited to coronary stents 2004-13, and extrapolating to policy

for all devices should be done with care. The theoretical model we develop provides guidance

for how this extrapolation should depend on the uncertainty in quality of new product

introductions, the rate of technological improvement, the learning rate in clinical trials, and

the observational learning rate for any type of device being considered.

Because the model is quite general and the type of data we use is available for many

markets, we hope that we have provided a starting point for analysis of regulation and market

structure in other industries where new product development and testing play are important.

Other product areas may also suffer from asymmetric information problems. Extending

the model to allow for this and to further explore the extent to which certification solves

asymmetry vs. amount of information problems offers another promising (and challenging)

area for future research.

We also hope to have provided a building block that could be used to provide a more

complete picture of how regulation affects market structure, innovation, and ultimately wel-

fare. While estimating the welfare effects of the access/risk tradeoff for an exogenously given

set of innovations is an important step towards better understanding this phenomenon, a

more complete understanding would allow for the regulatory regime to effect the types of

innovations firms develop for the market and vice-versa. Analysis of this type would require

a significant extension to the theory and additional data on innovative activities of the firms

in the market.
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ELECTRONIC APPENDICES—NOT FOR PRINT PUBLICATION

Appendices

A Theory Appendix

This appendix provides proofs to supplement the results provided in the body of the paper.

A.1 Supply Bounds on Total Surplus

As discussed in Section 3.3 of the paper, developing a full supply model of entry/exit, con-

tracting, and pricing would add frontier modeling efforts in both the bargaining and dynamic

oligopoly literatures that would distract from the current focus on information and the trade-

off between access and risk in regulating new products when quality of the innovations are

uncertain. Instead, we develop bounds on the total surplus TS(T c) generated under any

regulatory policy required pre-market clinical trials of length T c.

Our bounds rely on relatively weak assumptions on supply side behavior:

Supply Assumption 1 (EU Entry Costs): EU entry costs are low enough such that all

products developed with positive expected profits after EU testing enter.

Supply Assumption 2 (Entry Policy): The equilibrium entry policy of firms is increas-

ing in own expected profits: πj > π′j ⇒ Pr[Enterjt|πj] > Pr[Enterjt|π′j].

Supply Assumption 3 (Pricing): Prices are bounded by the marginal contribution of

the product: pj − cj ≤ TS(J )− TS(J \ {j}).

Under these assumptions, we can construct upper and lower bounds for total surplus.

Proposition UB (Upper Bound on TS(T c)): The total surplus generated in equilib-

rium when there are no direct fixed costs of longer clinical trials (φe(T c) = 0,∀T c ≥ 0)

provides an upper bound for the surplus generated in equilibrium when entry costs are

increasing in trial length (φe(T c + 1) > φe(T c),∀T c ≥ 0;φe(0) = 0).

Proof: In this case in any period t we have (note the fact that Qjt, σ
2
jt, pjt,Jt are all
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functions of T c is suppressed in the notation):

TSUBt (T c) := ln

 ∑
j∈Jt(0,T c)

eQjt−θ
ppmin
jt −

ρ
2
σ2
jt

+
∑

j∈Jt(0,T c)

qmax
jt (pmax

jt − c)

≥ ln

 ∑
j∈Jt(φe(T c),T c)

eQjt−θ
ppmin
jt −

ρ
2
σ2
jt

+
∑

j∈Jt(φe(T c),T c)

qmax
jt (pmax

jt − c)(12)

≥ ln

 ∑
j∈Jt(φe(T c),T c)

eQjt−θ
ppjt− ρ2σ

2
jt−γ|Jt|


+

∑
j∈Jt(φe(T c),T c)

qjt(pjt − c)− φe(T c)|Jt \ Jt−1| (13)

= TSt(φ
e(T c), T c).

The inequality in (13) holds for any nonnegative φe, θp, γ. The inequality in (12) obtains

from the fact that the choice set under nonnegative fixed costs is a weak subset of the

choice set under no fixed costs Jt(φe(T c), T c) ⊆ Jt(0, T c) (and the fact that in our

model the utility parameters are not a function of the choice set itself). That this will

hold weakly is certain due to the assumption that all potential entrants enter in the

observed EU regime (which has cost zero and also T c = 0), and so in expectation all

of these same products would enter in the upper bound case. The subset will be strict

in the case that φe(T c) is large enough so that some product j finds it unprofitable to

enter. Q.E.D.

Proposition LB (Lower Bound on TS(T c)): The total surplus generated in equilibrium

when entry costs are increasing in trial length (φe(T c+1) > φe(T c),∀T c ≥ 0;φe(0) = 0)

is bounded from below by the total surplus generated in equilibrium with these same

fixed costs, but where firms follow a naive entry strategy that assumes all other firms

will enter in equilibrium.

Proof: In this case in any period t we have (note the fact that Qjt, σ
2
jt, pjt,Jt are all
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functions of T c is suppressed in the notation):

TSLBt (T c) := ln

 ∑
j∈Jt((φej(T c),0−j),T c)

eQjt−θ
ppmax
jt −

ρ
2
σ2
jt−γ|Jt(0−j)|


+

∑
j∈Jt((φej(T c),0−j),T c)

qmin
jt (pmin

jt − c)− φe(T c)|Jt(0−j) \ Jt−1(0−j)|

≤ ln

 ∑
j∈Jt((φej(T c),0−j),T c)

eQjt−θ
ppjt− ρ2σ

2
jt−γ|Jt(0−j)|


+

∑
j∈Jt((φej(T c),0−j),T c)

qjt(pjt − c)− φe(T c)|Jt(0−j) \ Jt−1(0−j)| (14)

≤ ln

 ∑
j∈Jt(φe(T c),T c)

eQjt−θ
ppjt− ρ2σ

2
jt−γ|Jt|


+

∑
j∈Jt(φe(T c),T c)

qjt(pjt − c)− φe(T c)|Jt \ Jt−1| (15)

= TSt(φ
e(T c), T c).

The inequality in (14) obtains for any nonnegative θp. The inequality in (15) obtains

from the fact that the choice set under the full equilibrium is a subset of the choice set

under the naive equilibrium and that there is never over entry in either equilibrium:

Under the assumption that all potential products entered in the zero cost case, potential

profits (after fixed costs) will always be weakly higher in the full equilibrium, increasing

the probability of entry. Under the additional assumption that prices are bounded by

marginal contributions (which is the case, for example, in bargaining models previously

used in the literature), the surplus gain is always greater than the fixed cost of entry.

Q.E.D.

These upper and lower bound scenarios are equivalent to each other and to the full

equilibrium at T c = 0. Both will become further from the true equilibrium as the costs of

entry increase. We go through the details of computing each bound in Appendix C.2.

A.2 Regulator’s Total Surplus Tradeoff: Illustrative Case

The general total surplus function is complicated by the entry policies of firms, tracking

observational learning for firms that entered the market at different times, and potential

distortions due to heterogeneity in marginal costs and price markups. To clearly see the

core tradeoff between risk and access in the model, it is helpful to consider a simple case
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where testing and entry are costless, no observational learning, homogenous marginal costs

(normalized to zero for convenience), and no distortions in usage due to price. In this case,

the regulator’s tradeoff simplifies as follows:

TSt(T
c + 1)− TSt(T c) = ln

(∑
j∈Jt(T c+1) e

Qjt− ρ2σ
2
jt(T

c+1)∑
j∈Jt(T c) e

Qjt− ρ2σ
2
jt(T

c)

)
− φe |J e

t (T c + 1) \ J e
t (T c)|

= ln

(∑
j∈Jt(T c+1) e

Qjt− ρ2σ
2
jt(T

c+1)∑
j∈Jt(T c) e

Qjt− ρ2σ
2
jt(T

c)

)
(16)

=
ρ

2

(
σ2(T c)− σ2(T c + 1)

)
− ln

( ∑
j∈Jt(T c) e

Qjt∑
j∈Jt(T c+1) e

Qjt

)
(17)

where (16) follows from no fixed costs, and (17) follows from no observational learning. Then

averaging over any period of time t = 1, ..., T and recognizing φe = 0⇒ Jt(T c) = Jt+1(T
c+1)

so that the log sum term is telescoping yields (9).

A.3 Learning and Risk Aversion Predictions for Shares

Equation (10) showed the relationship between the estimated product qualities Qjt, uncer-

tainty about those estimates σjt, and the function of market shares implied by the demand

system ln(sjt/s0t). We reprint that equation here, with any other explanatory variables

over which learning is not directly occurring (e.g. price, the Ackerberg-Rysman adjustment)

partialed out, as they would be in the demand estimation.:

ln(sjt/s0t) + θppjt + γ ln(|Jt|) = δ̃jt := Qjt −
ρ

2
σ2
jt . (18)

We then make two claims about how this relationship can be used to examine the presence

of learning and risk aversion. We provide proofs for each of those claims here.

Prediction 1 (Learning): If initial product quality is uncertain σ2
Q > 0, then learning

1/σ2
A > 0 implies that expected volatility in product-specific quality estimates converge

by decreasing with age Ej|δ̃ja − δ̃ja+1| ↘a→∞ 0 or V arj(δ̃ja)↘a→∞ σ2
Q.

Proof: It is clear from the model setup and Bayes’ rule that nonzero precision of the

learning process 1/σ2
A > 0 (in and/or out of trials, so here we suppress that subscript)

implies convergence of quality estimates to the true quality Qja −→a→∞ Qj and the

convergence of uncertainty about that estimate to zero σ2
ja ↘a→∞ 0. Our further claim

is that evidence for this learning will be found by looking at measures of volatility of
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the market shares. First, consider the month-to-month absolute volatility:

|δ̃ja − δ̃ja+1| = |(Qja −
ρ

2
σ2
ja)− (Qja+1 −

ρ

2
σ2
ja+1)|

≥ |Qja −Qja+1|+
ρ

2
|σ2
ja − σ2

ja+1| (19)

where the right hand side of the equation is clearly positive (strictly for σ2
Q > 0), and as

an affine combination of two converging sequences must converge. Ej[Qja] = Q̄, ∀a and

σ2
ja ↘a→∞ 0 ensure that convergence of the expectation over products j is a decreasing

sequence (strictly for ρ > 0).

Second, consider volatility across products:

lim
a→∞

V arj(δ̃ja) = lim
a→∞

V arj(Qja)− 0

= lim
a→∞

V arj

(
σ2
0

aσ2
0 + σ2

A

a∑
τ=1

Qj + εjτ +
σ2
0

aσ2
0 + σ2

A

Qj0

)

= lim
a→∞

Ej

[
aσ2

0

aσ2
0 + σ2

A

(Qj − Q̄) +
σ2
0

aσ2
0 + σ2

A

a∑
τ=1

εjτ +
σ2
0

aσ2
0 + σ2

A

(Qj0 − Q̄)

]2
= Ej(Qj − Q̄)2 = σ2

Q (20)

Q.E.D.

Prediction 2 (Risk Aversion): If consumers (doctors making decisions on behalf of their

patients) are risk averse (ρ > 0), then expected product usage, conditional on age, will

increase strictly as learning occurs (Ej[δ̃ja]↗a→∞ Q).

Proof: This again follows from the basic structure of the learning model. Consider the

quantity of interest:

lim
a→∞

Ej[δ̃ja] = lim
a→∞

Ej[Qja]−
ρ

2
σ2
ja

= Ej[Qj]− 0

= Q̄ (21)

where the second line follows from the convergence of {Qja} and {σ2
ja}. σ2

ja ↘a→∞ 0

and ρ > 0 guarantee the convergence is increasing and strictly so. Q.E.D.
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B Data Appendix

B.1 Dataset construction

The dataset used in this paper is from Millennium Research Group’s Marketrack survey of

catheter labs, the source that major device manufacturers subscribe to for detailed market

research. The goal of the survey is to provide an accurate picture of market shares and

prices of medical devices. For our purposes, the key variables in the data are the price paid

and quantity used for each stent in each hospital in each month. In addition, the hospitals

report monthly totals for different procedures performed, such as diagnostic angiographies.

The data span January 2004 through June 2013 and cover the U.S. and E.U. markets.

There are three main challenges in constructing a usable dataset from the raw survey data.

First, the survey was not as concerned with collecting price data as it was with collecting

quantity data. Second, the survey measures stent usage rather than availability and our data

go back only to 2004, so it is not always possible to infer regulatory approval dates from

the data. Finally, there is some misreporting in the survey. The following tables illustrate

how key sample summary statistics compare across the cleaning steps for the E.U. and U.S.

datasets. These steps are summarized below; full detail can be found in the Stata code used

to execute them, cleaning-eu-data-3-sample.do and cleaning-us-data-3-sample.do.

EU dataset modifications
Diagnostic No. of stents No. of BMS No. of DES Average Stent-hospital- Hospital- Hospitals

procedures implanted products products stent age months months

Raw data 151 108 3.8 3.3 54.3 88,144 15,064 542

Rm. suspect q 161 98 3.3 2.8 54.5 61,098 13,477 540

Rm. if q¿2*diagnostics 152 107 3.8 3.3 54.3 86,672 14,812 537

Rm. suspect diagnostics 151 108 3.8 3.3 54.4 87,349 14,933 542

Rm. outlier p 148 106 3.8 3.3 54.4 81,646 14,149 532

Rm. unknown entry 150 108 3.8 3.3 54.0 87,516 14,995 541

Final sample 160 95 3.2 2.8 54.6 54,771 12,313 524

US dataset modifications
Diagnostic No. of stents No. of BMS No. of DES Average Stent-hospital- Hospital- Hospitals

procedures implanted products products stent age months months

Raw data 137 76 2.2 2.5 36.8 68,603 17,183 526

Rm. suspect q 147 68 1.9 2.1 37.8 44,218 14,631 509

Rm. if q¿2*diagnostics 138 76 2.2 2.5 36.7 67,783 16,982 517

Rm. suspect diagnostics 138 76 2.2 2.5 36.8 67,857 16,997 526

Rm. outlier p 136 75 2.2 2.5 37.1 66,293 16,720 525

Final sample 147 67 1.8 2.1 38.0 41,779 13,900 478

The table rows record the sample means for key summary statistics across various cleaning

steps. The summary statistics are means of quantities calculated at the hospital-month

level. The means reported are of the total number of stents implanted; the total number of

diagnostic angiographies; the number of different bare-metal stents (BMS) used; the number

of different drug-eluting stents (DES) used; and the weighted average age, in months, of the
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stents used. The table also shows the total number of stent-hospital-month observations,

number of hospital-month observations, and number of hospitals in each sample.

The table rows correspond to different samples. The first row of each table summarizes

the raw E.U. and U.S. survey data. The second row drops hospital-months with suspect

total quantities. The criteria for dropping are threefold. First, we drop hospital-months for

which the total quantity of stents changes by (weakly) more than 50% relative to the previ-

ous month in which the hospital appears in the data. Second, for “low-quantity” hospitals

with mean monthly stent quantities below 15, we drop hospital-months with usage strictly

greater than 1.5 standard deviations from the hospital’s mean. For “high-quantity” hospi-

tals with mean monthly stent quantities (weakly) greater than 15, we drop hospital-months

with usage strictly greater than 3.0 standard deviations from the hospital’s mean. Third, for

hospital-months with flagged quantity changes that were accompanied by a 30% or greater

change in diagnostic angiography procedures, the hospital-months were undropped. Diag-

nostic angiography procedures are performed prior to coronary stent implantation, so large

changes in monthly stent quantities should be accompanied be similarly large changes in

angiographies.

The third and fourth rows of the table drop hospital-months with suspect diagnostic

angiography counts. Diagnostic angiographies should be bounded below by some multiple of

the number of stents used; in our data and anecdotally according to clinicians, there are at

least two diagnostic angiography procedures per stent implant. The third row drops hospital-

months if their total quantity of stents exceeds twice the number of diagnostic angiographies

in that hospital-month. The angiography count itself could be suspect. The fourth row

drops hospital-months if the number of diagnostic angiographies is more than 2 standard

deviations away from the hospital’s mean and if the ratio of angiographies to stents was 2

standard deviations from the hospital’s mean.

The fifth row of the table drops hospital-months with problematic prices. We drop

hospital-months with outlier prices based on a regression of log-price on the hospital’s number

of BMS products and number of DES products used that month, in addition to a hospital

fixed-effect. Hospital-months with products whose regression residuals were more than 2

standard deviations from the mean of all residuals were dropped.

The sixth and penultimate row of the E.U. table drops hospital-months with positive

quantities for stents for which E.U. regulatory approval dates are not known. Since the age

of the product is an important component of our analysis, the products for which an entry

date could be pinned down with reasonable certainty must be removed from the analysis.

This drop affects only a few products. There are no products for which the U.S. approval

dates could not be ascertained, so this row is missing from the U.S. table.

The final row in each table reports summary statistics for the final sample, which drops
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all observations that meet one or more of the dropping criteria described above.

B.2 Evidence of learning from individual products

Figure 10: Learning patterns for selected individual products. Three representa-
tive products that receive good and bad news from trials or not much (useful) news at all.
Left panel (a) plots mean utility estimate for each product ln(sja/s0a) by age since introduc-
tion into the EU. Right panel (b) plots absolute differences | ln(sja/s0a)− ln(sja+1/s0a+1)|
by age, which should be larger with more uncertainty, and converge toward zero with
learning.
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mean s.d. p25 p50 p75 N

∆t ln(sjt/s0t)|a=1 0.24 1.14 -0.16 0.12 0.60 27
∆t ln(sjt/s0t)|a=12 0.17 0.50 -0.04 0.08 0.27 29
∆t ln(sjt/s0t)|a=24 -0.11 0.30 -0.31 -0.06 0.11 32

Averaging across products conditional on age provides patterns in the data that have di-

rect relation to expected patterns in our model. However, these averages cloud heterogeneity

across products. Figure 10 provides two types of evidence of this variation. First, the figures

in the panels provide patterns for a few individual products illustrate how learning does not

always bring good news and lack of learning brings a volatile mix of good and bad over time.

Second, the table below the panels provides summary statistics on the raw changes in usage

patterns with age ln(sjt/s0t)− ln(sjt+1/s0t+1) for products in the EU, undergoing US trials.

The patterns documented previously regarding decreases in volatility and increasing mean

usage with age might be worrisome if they were driven by increasing usage for all product

with age that then asymptotes as in a diffusion process. The table on the raw usage changes

show this is not the case—there is a large fraction of changes that are ”bad news” for

products.

48



B.3 Regulatory Differences Are Not Driven by Differences in Dis-

ease Incidence or Treatment Preferences

In theory it could be that the differences in usage patterns between the US and EU are

driven by differences in disease incidence, preferences for angioplasty and stents, or variation

in price setting regimes between the US and EU. However, all the evidence that we have been

able to gather indicates that these explanations do not plausibly explain the patterns in the

data described above. For example, the average ischemic heart disease mortality rate is very

similar between the US and the EU, suggesting that the disease incidence is also similar.

The 2010 mortality rate in the US for ischemic heart disease was 126.5 deaths per 100,000;

and the corresponding figure for the EU is 130.0 per 100,000.33 This modest differential

seems unlikely to account for the stark differences of entry rates between the two regions.

Figure 11: Comparison of diagnostic procedure patterns, EU vs. US. Left
panel (a) plots the distribution of number of diagnostic procedures across hospitals—the
US and EU are nearly identical. Right panel (b) plots the distribution across hospitals of
the probability that a diagnostic procedure results in stenting—the EU is shifted slightly
to the right of the US, with a mean of 32 versus 28 percent.
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Prior to performing an angioplasty in which a stent may be inserted, the patient must

undergo a diagnostic angiography. In this procedure, the blood flow through the coronary

artery is visualized and this information is used to determine whether the patient should

receive a stent or some other medical intervention. If the difference in the number of stents

available between the EU and the US was driven by higher demand for stents, then it should

show up in the data with the EU performing a larger number of angiographies or having

a higher rate of stenting conditional on the angiography rate. Figure 11 documents the

33OECD Health at a Glance, 2013.

49



distributions of the number of diagnostic angiographies performed across the hospitals in

our data and percent of those diagnostic procedures resulting in a stenting procedure across

hospitals in the US and EU samples. The distributions are close to identical statistically,

with the EU having a few more small volume hospitals and hospitals that are more likely

to place a stent conditional upon a diagnostic procedure. In the EU, 32 percent of patients

received a stent conditional on an angiography while in the US that figure was 28 percent.

Like the evidence on heart disease prevalence, this small difference seems unlikely to explain

the large disparity in entry rates between the two regions.

Figure 12: Comparison of usage and price patterns EU vs. US.
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(b) Average Price Paid
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Figure 12 documents that DES usage as a percentage of all stents used is lower in the EU

but follows similar patterns to the US over time. If the increased DES entry in the EU was

driven by higher demand, we would expect the opposite pattern. Figure 12 also shows that

the prices and hence profits per stent sold are lower in the EU. This is true for both BMS

and DES and is true over our entire sample period. Both of these patterns are likely the

result of lower reimbursement levels for stent procedures overall, lower DES reimbursement

levels in particular, and more competing devices in the EU market. These findings suggest

that conditional upon FDA approval, average variable profit in the US is higher making it a

more attractive entry target than the EU. This, in turn, suggests that the differential entry

rates is driven by differences in regulation and not underlying demand.
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B.4 Distribution of Profits Over Product Lifetime and Across

Products

The counterfactual lower bounds with fixed costs of entry require calculation of expected

lifetime profits under the assumption that all firms who enter in the EU do enter in equilib-

rium. This number can be directly acquired from the EU data for the 41 of 109 products

that both enter and exit the market during our sample period. However, for the other 68

products whose lifetimes are truncated at the beginning or end, we need to extrapolate.

Figure 13: Distribution of Profits Over Age and Across Products.
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(b) Distribution of Lifetime Profits over
Products
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Products with full lifetime during sample period:
Months in sample 21.5 19.8 5 15 47 41
Profit per month ($1000s) 179 612 18 70 211 41
Products with censored lifetime:
Months in sample 53.1 34.9 10 46 100 68
Profit per month ($1000s) 1,347 2,119 41 262 4,067 68

We perform this extrapolation by estimating the percent of cumulative lifetime profits the

average product has earned at each age. We then use this percent to extrapolate the missing

profits, for whatever age at which the truncation occurred. We do this unconditionally on any

covariates besides age. Our counterfactual estimates are robust to a variety of approaches to

this extrapolation. This is in part because the extrapolation is typically for the beginning or

end of lifetime tail of product profits, so that lifetime profit projections are not very sensitive

to the method we choose. And further the products that are marginal in our counterfactuals,

in the sense that they exit as entry costs increase, are also marginal in the computation of

consumer surplus in that which enter (and even to some extent how many enter) does not
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greatly affect total welfare.

The distribution of estimated lifetime profits makes it clear that many products with

quite low profitability enter the EU, supporting our assumption that the products in the EU

market represent a reasonable approximation to the set of products developed that firms

might consider testing and bringing to market.

C Estimation and Counterfactual Algorithms

C.1 Demand/learning estimation algorithm

The estimation approach is to construct a generalized method of moments estimator that

matches the observed market shares in the data (and knowledge of which products are in

clinical trials when) to the demand and learning model. The Matlab code for this estimator

is available in the electronic archive code4RegulatingInnovation.zip. This appendix outlines

the main steps of the algorithm.

1. Compute mean utilities δjt = ln(sjt/s0t) for all product-months.

2. Construct an initial estimator for uncertainty immediately after EU testing σ2
ja=1 using

the empirical equivalent from the distribution of δjt.

3. Guess initial values for learning precisions σA := (σA, σAc).

4. Compute the full vector of σ2
jt implied by σ2

ja=1, the learning precision parameters, and

which products are in trials when.

5. Least squares then gives an estimator for ρ and the product qualities Qj as a function

of the learning parameters, where [Qj; ρ](σA) = (X ′X)−1X ′δ with X = [1j,−1
2
σ2
jt].

(Here Qj represents the vector of coefficients on product dummy variables, and 1j the

matrix of product dummy variables.)

6. We need to make sure that the distribution of Qjt := δjt + ρ
2
σ2
jt is consistent with the

σ2
ja=1 by recomputing σ2

ja=1(Qjt) and repeating 4-6 until σ2
ja=1 converges.

7. Compute the residuals ξjt = δjt −Qj + ρ
2
σ2
jt.

8. Evaluate GMM objective function based on E[ξ′Z] = 0 where Z =
[

1
ajt

1
a2jt

]
.

9. Repeat 4-8 until we find the value of σA that minimizes the GMM objective function.
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C.2 Optimal regulation counterfactual algorithm

The advantage of the upper and lower bounds we have defined on total surplus is that

they can be calculated using only the data and demand/learning model estimates. For each

potential T c = 0, 1, ..., 24 we calculate the upper and lower bounds as follows:

Upper Bound

1. Given T c, restrict sample to products that would be active in each month.

2. Use demand/learning model to compute total surplus over the sample period.

Lower Bound

1. Given T c, restrict sample to products that would be active in each month.

2. Given φe = T c × 1.6E6, restrict sample to products that would enter, under the naive

assumption that firms assume other products enter as if φe = 0.

3. Use demand/learning model to compute total surplus over the sample period, remem-

bering to subtract fixed costs when products enter.

Note from the proofs that both of these algorithms require pmax and pmin vectors such

that the total surplus bounds hold once price effects on the extensive margin are accounted

for. In theory, these could be very extreme, e.g. pmax = c + (TS(J ) − TS(J \ {j}))
and pmin = c, and provide valid bounds, but such bounds may not be tight enough to

be informative. In our estimation routine, we use a reduced-form pricing equation pjt =

c + βjt(TSt(J )− TSt(J \ {j})) and assumed cost equal to the minimum price observed in

the data to compute implied portions of the marginal contributions that go to each product

βjt. We then use the maximum and minimum marginal contributions that would occur

under the full entry and naive entry cases considered in the bounds to compute maximum

and minimum prices. We have also explored simple rules such as considering prices plus or

minus 10 percent of those observed, and our results remain unchanged.

C.3 Observational learning counterfactual algorithm

Because we only specify bounds on total surplus for any trial length T c, we obtain only

bounds on the optimal trial length under any parameter values [T cLB(σA), T cUB(σA), ]. Thus

for each potential value of observational learning precision 1/σ2
A = 0, 1/10σ2

Ac , 2/10σ2
Ac , ..., 1/σ

2
Ac

we calculate the bounds on optimal trial time and surplus generated by these trial times as

follows:

53



1. Given 1/σ2
A, calculate the upper and lower bounds on surplus generated for T c =

0, 1, ..., 24 as done previously for the zero observational learning case.

2. T cLB(σA) will be the maximum T c such that the upper bound total surplus is less than

the maximum of the lower bound total surplus (among the T c below that at which the

lower bound surplus is maximized).

3. T cUB(σA) will be the minimum T c such that the upper bound total surplus is less than

the maximum of the lower bound total surplus (among the T c above that at which the

lower bound surplus is maximized).

4. The tightest bounds on surplus created in this case are simply the max of the upper

bound surplus and max of the lower bounds surplus.

D Robustness Checks and Additional Analyses

D.1 Measuring Learning Using Variance Across Products, V ar(δjt)|a
In the paper we use the volatility measure based on within product usage over time Meanj|a

|∆t ln(sjt/s0t)| to detect reduced form evidence of learning. We prefer this measure for the

reduced form analyses because it is intuitively connected to learning and converges to zero

as learning occurs. A drawback, however, is that this measure will only show evidence of

learning if consumers are risk averse, and it could be more susceptible to mistaking some

types of product diffusion for learning. Here we show evidence of learning using the more

robust (though perhaps less intuitive) measure of across product variance in usage conditional

on age StdDevj|a ln(sjt/s0t).

As demonstrated in the model predictions, this will converge to the unconditional product

quality variation σQ with learning, independent of risk aversion. This is the variation we use

to measure learning in our structural estimation. Figure 14 shows the reduced form patterns

in this measure for the matched US / EU and EU in trials / not comparisons, which are the

heart of our learning evidence.

D.2 Sample with Overlapping Support on Qaj=1

D.3 Looking at EU within Countries

At the beginning of the data section we noted that over seventy percent of all products

released in the EU were observed in all EU countries for which we have reasonable sample

sizes (France, Germany, Italy, Spain, and UK), but that even this might undercount country-

level entry due to sampling error for little used products with samples of around twenty
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Figure 14: Learning evidence using StdDevj|a ln(sjt/s0t)
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hospitals. Because of this potential for sampling error, and the fact that regulation of entry

is for the entire EU market, we prefer the EU as the level of analysis in the paper.

We have, however, run the same analysis at the country level for the five larger countries,

and we find our results unchanged. We take this as further evidence that the patterns we

observe at the EU level are indeed capturing learning and not a complicated diffusion process

across countries. Figure 16 displays the results for Italy. Other country results are available

from the authors upon request.

Figure 16 compares products in Italy that (1) undergo clinical trials for US release; and

(2) that never undergo trials beyond those required for EU introduction. The evidence is

qualitatively identical and numerically very close to that from the full EU sample. The mean

of mean utility estimates in panel (a) reveal that all of the evidence of learning is driven

by those products in clinical trials. The curve is flat for products not in trials, which not

only rules out observational learning for these products, but also rules out diffusion driven by

marketing, sales, or distribution of new-to-the-world products. The mean absolute differences

in panel (b) reconfirm that the learning in the EU is driven by the products undergoing

clinical trials. Importantly, they also refute the argument of selection on uncertainty, as the

EU products not in trials begin the same as the products in trials, but remain flat over time,

suggesting that there is plenty of uncertainty for these products, but no learning.

D.4 Looking at EU within Hospital

While our original data is at the product-hospital-month unit of observation, we aggregate

to the EU level in order to account for the fact that because of physician preferences (and
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Figure 15: EU only, products in trials vs. not. (overlapping samples) This
robustness check corrects for the fact that many products in the EU may not be comparable
to products that eventually enter the US, using samples for products in trials and not that
overlap in their initial quality estimates at aj = 1 (criteria −8.92 < ln(sjt/s0t)|aj=1 <
−6.24).

(a) Meanj|a ln(sjt/s0t) (within product)

−
8

−
7

−
6

−
5

−
4

−
3

In
c
lu

s
iv

e
 S

h
a
re

0 12 24
Age Since Introduction to Region (Months)

EU (in trials) EU (not in trials)

(b) Meanj|a | ln(sjt/s0t)− ln(sjt+1/s0t+1)|
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xa=1 xa=24 x24 − x1 (xtrial24 − xtrial1 )
−(xnot24 − xnot1 )

Mean
EU |trials

j|a ln(sjt/s0t) -6.58 -4.31 2.26 1.83

(0.29) (0.25) (0.38) (0.45)

Mean
EU |not

j|a ln(sjt/s0t) -7.18 -6.74 0.44

(0.16) (0.24) (0.29)

Mean
EU |trials

j|a
| ln(sjt/s0t)− ln(sjt+1/s0t+1)|

1.03 0.40 -0.63 -0.40

(0.38) (0.14) (0.41) (0.41)

Mean
EU |not

j|a | ln(sjt/s0t)− ln(sjt+1/s0t+1)| 0.76 0.54 -0.23

(0.11) (0.10) (0.14)

N = 529 product-month observations (all in EU; restricted to overlapping support of Qj,a=1). Standard
errors clustered by month Nt = 114 in parentheses.

possibly contracting concerns), not all hospitals use all stents. Thus hospital level revealed

preference measures will be conditional on this selection. They will also fail to capture

extensive margin changes in what is used at a given hospital and suffer the most severely

from sampling error for rarely used products.

Despite these drawbacks to using the hospital level data to estimate welfare-relevant

parameters, one would still hope to find (potentially muted) evidence of learning within

hospitals for the products they purchase regularly over time. To explore this, we run the

same analysis, instead using usage data at the hospital level to calculate ln(sjht/s0ht) and

take summary statistics by age over these product-hospital-month observations. Figure 17
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Figure 16: Italy only, products in trials vs. not.
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(b) Meanj|a | ln(sjt/s0t)− ln(sjt+1/s0t+1)|

0
.2

.4
.6

.8
1

In
c
lu

s
iv

e
 S

h
a
re

 C
h
a
n
g
e
 B

e
tw

e
e
n
 M

o
n
th

s
 (

W
it
h
in

)

0 12 24
Age Since Introduction to Region (Months)

Italy (in US trials) Italy (not in US trials)

xa=1 xa=24 x24 − x1 (xtrials24 − xtrials1 )− (xnot24 − xnot1 )

Mean
EU |trials

j|a ln(sjt/s0t) -4.54 -2.12 2.42 2.02

(0.31) (0.11) (0.33) (0.39)

Mean
EU |not

j|a ln(sjt/s0t) -4.99 -4.59 0.40

(0.16) (0.17) (0.22)

Mean
EU |trials

j|a |∆t ln(sjt/s0t)| 0.77 0.16 -0.61 -0.52

(0.19) (0.04) (0.20) (0.22)

Mean
EU |not

j|a |∆t ln(sjt/s0t)| 0.64 0.55 -0.09

(0.09) (0.09) (0.13)

N = 831 product-month observations (all in Italy). Standard errors clustered by month Nt = 114 in parentheses.

displays the results.

The evidence at the hospital level still shows signs of learning, though the evidence is

muted and noisier than at the EU level. The numbers are difficult to compare directly

to those at the EU level because of the selection on which hospitals are observed using

which products (which is consistent is overall higher log share terms) and also the increased

sampling variation (which could be the cause of the first differences not moving closer to zero).

The differences-in-differences estimates have the right sign but are noisy with confidence

intervals including zero. This is in part because of relatively noisier estimates at a = 1

(which itself is related to uncertainty)—while the in-trial vs. not groups are statistically

indistinguishable at a = 1, the in-trial group has statistically lower volatility and higher

usage at a = 24.
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Figure 17: Hospital Level—EU only, products in trials vs. not.

(a) Meanjh|a ln(sjht/s0ht) (within prod-
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(b) Meanjh|a | ln(sjht/s0ht) −
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xa=1 xa=24 x24 − x1 (xtrials24 − xtrials1 )− (xnot24 − xnot1 )

Mean
EU |trials

j|a ln(sjt/s0t) -1.70 -1.38 0.32 0.22

(0.22) (0.06) (0.23) (0.25)

Mean
EU |not

j|a ln(sjt/s0t) -2.02 -1.92 0.10

(0.09) (0.05) (0.11)

Mean
EU |trials

j|a |∆t ln(sjt/s0t)| 0.59 0.43 -0.16 -0.06

(0.03) (0.03) (0.04) (0.07)

Mean
EU |not

j|a |∆t ln(sjt/s0t)| 0.65 0.55 -0.10

(0.05) (0.03) (0.06)

N = 14, 500 product-hospital-month observations (all in EU). Standard errors clustered by month Nt = 114 in
parentheses.

D.5 Placebo Check on Device With Similar US/EU Approval Re-

quirements

As another check that our results are indeed capturing learning in the EU from US clinical

trials, we perform a “placebo” type analysis by looking at a device where we know such trials

are not required. We perform the analysis on PTCA balloons catheters, which are often used

to clear a blockage in the artery before the stent is placed. Standard balloons (ones that

do not have drug coatings or special cutting capabilities) typically have little, if any, gap

between US and EU approval requirements. This is evident in the lag between US and EU

introduction of on average two months (here we calculated entry from first observation in the

data instead of looking up press releases, and so the confidence interval includes zero when

sampling error is taken into account). Despite this lack of lag for those products introduced

in both the US and EU, we still observe many balloons introduced only in the EU because

they are sold by the same sales force as stents, but are much lower revenue products, so
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that only a few companies enter the US market for the purpose of selling balloons only.

During our ten year sample, 40 manufacturers sell 113 different balloons in the EU and 6

manufacturers sell 40 different balloons in the US. Thus we can execute our same research

design on balloons, with the expectation of no differential learning between products that

are EU only versus those that enter the US as well.

Figure 18: PTCA Balloons—EU only, products that enter US vs. not.

(a) Meanj|a ln(sjt/s0t) (within product)
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(b) Meanj|a | ln(sjt/s0t)− ln(sjt+1/s0t+1)|
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xa=1 xa=24 x24 − x1 (xtrials24 − xtrials1 )− (xnot24 − xnot1 )

Mean
EU |trials

j|a ln(sjt/s0t) -4.22 -3.25 0.96 0.37

(0.17) (0.27) (0.32) (0.33)

Mean
EU |not

j|a ln(sjt/s0t) -6.52 -5.93 0.60

(0.16) (0.18) (0.21)

Mean
EU |trials

j|a |∆t ln(sjt/s0t)| 0.28 0.29 0.00 0.21

(0.04) (0.07) (0.08) (0.14)

Mean
EU |not

j|a |∆t ln(sjt/s0t)| 0.81 0.60 -0.21

(0.11) (0.13) (0.11)

N = 789 product-month observations (all in EU). Standard errors clustered by month Nt = 114 in parentheses.

Figure 18 shows the results of this placebo test, comparing EU data for products that do

and do not enter the US as well. The results illustrate the importance of looking at learning

evidence in the volatility along with trends in means as well as the importance of having

comparison groups to be able to look at differences-in-differences. Except for what appears

to be an outlier shock from month one to two for usage of EU only balloons, there is no

evidence of learning in the volatility figure. Mean usage of products in both groups trend

up slightly with age, but these trends are statistically identical, suggesting a slight diffusion

process that affects all balloons in the EU that is not driven by learning about product

quality.
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D.6 Testing Symmetric vs. Asymmetric Information

Our test of information symmetry in Figure 5 relies upon the intuition that symmetric learn-

ing (as we assume in our model) suggests that the inferred distribution of product qualities

should tighten from both ends of the distribution as learning occurs (and also shift up if

consumers are risk averse). This contrasts with a model where suppliers have private in-

formation about their product qualities, where consumer learning should take the form of

realizing that manufacturers who engage in costly testing must have product quality exceed-

ing some threshold, which suggests that the inferred distribution of product qualities should

tighten from the bottom as learning occurs. Figure 19 illustrates these ideas graphically.

Figure 19: Learning effects on inferred product quality distributions under
symmetric and asymmetric information mechanisms.
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(b) Asymmetric Info (Hypothetical)
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The left panel (a) plots two distributions directly from our EU data for stents undergoing

US trials: (Pre-learning) plots the density of ln(sjt/s0t)|a=1; and (Post-learning) plots the

density of ln(sjt/s0t)|a=12. As one would expect from Figure 5 in the paper, the distribution

shifts up and tightens symmetrically after 12 months in US clinical trials.

The right panel (b) plots the same pre-learning distribution, and displays the expected

post-learning distribution from applying a truncated learning rule ln(sjt/s0t)|a=1,ln(sjt/s0t>−6.

The plot illustrates the type of distribution we might expect if there were learning with

asymmetric information. This is clearly different from the symmetric model and from our

data, which is why our test in Figure 5 fails to reject the null hypothesis of symmetric

learning.
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D.7 Model fit and comparison with fixed effects least-squares es-

timates

Figure 20: Comparison of estimates from fixed effect and learning models.
Left panel (a) plots the estimated distribution of product qualities from the parametric
learning model and age fixed effects model. Right panel (b) plots the estimated discount
due to uncertainty versus product age for the two models.
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Figure 20 shows the estimated distribution of product qualities Qj and uncertainty dis-

counts −ρ
2
σ2
jt for both the learning model and the more flexible model with product and age

fixed effects. The message here is that despite its parsimony, the simple learning model fits

the data well and its fit is comparable to the much more nonparametric fixed effects model

(R2 of 0.95 vs. 0.98), so our results are not driven by the functional form of the learning

model.
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