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Abstract

In a randomized 2 × 2 factorial trial, more than one hypothesis is to be tested, so some
method must be used to control the probability of falsely rejecting at least one true hy-

pothesis. We contrast familiar elementary methods of controlling the family-wise error

rate based on the Bonferroni-Holm procedure with a less familiar but equally elementary

form of structured testing associated with the large class of procedures that descend from

the closed testing approach of Marcus, Peritz and Gabriel. In a range of plausible situ-

ations, giving priority to main effects in structured testing typically yielded greater power

to detect main effects for a given sample size or reduced sample size for a given power; it

also permited testing for interaction when main effects are found.

1 Introduction: smaller required sample sizes through better analytic
plans

The randomized 2 × 2 factorial design is widely used in clinical trials, permitting two
treatments to be studied effi ciently in a single trial. For two examples, see Brown et

al. (2001) and Stone et al. (2002), and for general discussion, see Byar and Piantandosi

(1985), Stampfer et al. (1985), and Ellenberg, Finkelstein and Schoenfeld (1982). In such

trials, the main effects of the two treatments are often of primary concern, and the 2 × 2
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factorial design is used to determine whether either or both treatments are effective; in

addition, some information is provided about interactions between the treatments. To

interpret such a trial, more than one hypothesis is tested, and some method must be used

to control the probability that a true null hypothesis is falsely rejected. How should this

probability of false rejection be controlled?

The probability of falsely rejecting at least one true null hypothesis, say π, is the family-

wise error rate. One familiar way to obtain π ≤ α when performing K tests is to apply

the Bonferroni inequality, rejecting the kth of K hypotheses if its P -value is less than or

equal to α/K, and Holm’s (1979) method is similar but offers an improvement in power.

Another way to obtain π ≤ α is to use one of the many methods of structured testing that
descend from the paper on closed testing by Marcus, Peritz and Gabriel (1976) in which

testing is given a structure in which hypotheses are tested each at level α and testing

terminates for certain patterns of acceptances. For a few of the many such structured

descendents of closed testing, see Shaffer (1986), Koch and Gansky (1996), Bauer and

Kieser (1996), Bauer (1997), Hsu and Berger (1999), Westfall and Krishen (2001), Finner

and Strassburger (2002), Hommel and Kropf (2005), Hommel, Bretz and Mauer (2007),

Meinshausen (2008), Rosenbaum (2008), Ehm, Kornmeier and Heinrich (2010), Finos and

Farcomeni (2010) and Goeman and Solari (2010). A common feature of these descendents

is that they permit somewhat more flexibility in the structure of the testing than was

possible in the original version of closed testing. For instance, the methods of Bauer and

Kieser (1996), Hsu and Berger (1999) and Rosenbaum (2008) may test infinitely many

hypotheses.

One of us recently submitted a proposal to NIH for a 2×2 factorial randomized clinical
trial to evaluate two treatments that provide incentives for cognitive exercise in the elderly

with a view to diminishing or delaying dementia; see Willis et al. (2006) and Papp et

al. (2009) for discussion of related studies. In the process of preparing that proposal,

we performed a few power or sample size calculations, and in particular we compared

some fairly conventional uses of the Bonferroni-Holm procedure with a simple version of

structured testing tailored to the 2 × 2 factorial design. An abbreviated and simplified

version of this comparison appears in Table 1. Although there is no uniformly most

powerful procedure in this context, the power comparison generally favored the structured

testing approach, yielding higher power for the same sample size or lower sample size for

the same power. This is in contrast to typical textbooks, typical courses in statistical

methods, and typical scientific practice in which procedures such as the Bonferroni-Holm
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method are prominent and structured testing is infrequent. Our interpretation of Table 1

is that a change in emphasis towards structured testing may be appropriate. We focus on

the 2× 2 factorial design because it was the original motivation for this work and because
it is suffi ciently simple that we may present a fairly exhaustive power comparison.

Outside of randomized experiments, in nonrandomized or observational studies, struc-

tured testing has certain additional advantages when studying the sensitivity of conclusions

to departures from random assignment. For discussion, see Rosenbaum and Silber (2009)

and Rosenbaum (2010, §19).

2 Methods: three analytic plans that control the probability of falsely
rejecting a true hypothesis

We contrast the power of three analytic plans to reach various conclusions in the 2 × 2
factorial. All three plans control the chance of falsely rejecting any true hypothesis, but

they do this in different ways. We describe the plans in terms of level α, 0 < α < 1; in

practice, this is commonly α = 0.05. The first two are entirely standard plans, using Holm’s

(1979) improvement of the familiar Bonferroni inequality; see Hochberg and Tamhane

(1987, §4) or Lehmann and Romano (2005, §9). The two standard plans differ in that

plan I tests for main effects and interaction, allowing for three tests, while plan II tests only

for main effects, allowing for two tests, so plan II has more power to detect main effects

and no possibility of detecting an interaction. The third procedure (III) uses one simple

version of structured testing. Each of the three analytic plans controls the probability

of false rejection – though several hypotheses are tested, the chance of falsely rejecting

at least one true hypothesis is at most α – however, they do this in different ways, and

in particular, they test slightly different hypotheses. In describing hypotheses, logical

notation is used, so H ∧H ′ is the hypothesis that H and H ′ are both true, while H ∨H ′

is the hypothesis that either H or H ′ or both are true.

The three analytic plans make reference to four P -values. These are: PM1 testing the

null hypothesis H1 of no main effect of factor 1, PM2 testing the null hypothesis H2 of no

main effect of factor 2, PI testing the null hypothesis HI of no interaction of factors 1 and

2, and PM,1∧2 testing the hypothesis H1 ∧H2 of no main effect for both factors 1 and 2.
Method II does not examine PI , so it cannot detect an interaction by rejecting HI . In

the simplest case of a balanced 2 × 2 factorial with Gaussian errors, PM1, PM2, and PI
might be derived from two-sided t-tests on single degree of freedom contrasts, and PM,1∧2
might be derived from an F-test combining the two-degrees of freedom for the two main
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effects. In an unbalanced Gaussian design, these are specific linear hypotheses in a linear

model with a constant term, two main effects and one interaction; in particular PM,1∧2 is

from an F -test about two parameters in this linear model. More generally, these P -values

might instead come from likelihood ratio tests under some model or from nonparametric

tests (e.g, Patel and Hoel 1973). What is required of the four tests is simply that each test

yields a valid P -value; that is, when its null hypothesis is true, the P -value is ≤ α with

probability at most α for all 0 < α < 1.

I. Bonferroni-Holm test of main effects and interactions. Sort PM1, PM2, and

PI into nondecreasing order as P(1) ≤ P(2) ≤ P(3), so for instance P(1) = min (PM1, PM2, PI).

If P(1) > α/3, no hypothesis is rejected and testing stops. If P(1) ≤ α/3, then the hy-
pothesis of no effect, H1∧H2∧HI , is rejected, as is the hypothesis associated with P(1)
(one of H1, H2 and HI), and testing continues. If P(1) ≤ α/3 and P(2) ≤ α/2, then

the hypothesis associated with P(2) is also rejected, and testing continues; otherwise

testing stops. If P(1) ≤ α/3 and P(2) ≤ α/2 and P(3) ≤ α, then all three hypotheses
about effects (all of H1, H2 and HI) are rejected, so the hypothesis H1 ∨H2 ∨HI is
rejected.

II. Bonferroni-Holm test of main effects only. Two P -values are computed, PM1

for the main effect of factor 1, PM2 for the main effect of factor 2. Ifmin (PM1, PM2) >

α/2, no hypothesis is rejected and testing stops. If min (PM1, PM2) ≤ α/2, then the
hypothesis of no main effects, H1∧H2, is rejected, as is the hypothesis associated with
min (PM1, PM2) (either H1 or H2), and testing continues. If min (PM1, PM2) ≤ α/2

and max (PM1, PM2) ≤ α, then the hypothesis associated with max (PM1, PM2) is

also rejected (either H1 or H2) so H1 ∨H2 is rejected. The interaction is not tested.

III. Structured testing, main effects first, then interaction. A single P -value, PM,1∧2
is computed to test the null hypothesis of no main effects. If PM,1∧2 > α, no hypoth-

esis is rejected and testing stops. If PM,1∧2 ≤ α, the hypothesis of no main effects,

H1 ∧H2, is rejected, and testing continues. If PM,1∧2 ≤ α and PM1 ≤ α, then the

hypothesis H1 of no main effect of factor 1 is rejected, and also if PM,1∧2 ≤ α and

PM2 ≤ α, then the hypothesis H2 of no main effect of factor 2 is rejected. If either

PM1 > α or PM2 > α, testing stops. Otherwise, if PM,1∧2 ≤ α and PM1 ≤ α and

PM2 ≤ α, then H1 ∨H2 is rejected, and the interaction is tested, whereupon if also
PI ≤ α, then the hypothesis HI of no interaction is also rejected. If PM,1∧2 ≤ α and
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either PM1 ≤ α or PM2 ≤ α then at least one main effect has been identified, and

the probability of this is labeled identify in Table 1.

Although our main interest is quantitative comparisons of the power of these three

procedures, one qualitative comparison provides some insight. The hypothesis H1 ∨ H2
says at least one of the two treatments has no main effect. If one were testing H1 ∨ H2
alone using intersection-union testing, then H1 ∨ H2 would be rejected at level α if both
PM1 ≤ α and PM2 ≤ α; see Berger (1982) and also Lehmann (1952). By contrast,

procedure III rejects H1 ∨ H2 if PM,1∧2 ≤ α and PM1 ≤ α and PM2 ≤ α; however,

in a large balanced factorial under the usual Gaussian model, PM1 ≤ α and PM2 ≤ α

implies PM,1∧2 ≤ α (see Miller 1981, §3.7, Figure 12), so in this case procedure III rejects

H1 ∨ H2 whenever intersection-union testing rejects H1 ∨ H2. In contrast, procedure II
rejects H1 ∨H2 if min (PM1, PM2) ≤ α/2 and max (PM1, PM2) ≤ α, so procedure II may

fail to reject H1 ∨H2 when intersection-union testing would reject it. Procedure I rejects
H1 ∨H2 if min (PM1, PM2, PI) ≤ α/3, min (PM1, PM2) ≤ α/2 and max (PM1, PM2) ≤ α, so
procedure I may fail to reject H1 ∨H2 when procedure II would reject it, and it may fail
to reject H1 ∨H2 when procedure II would fail to reject it but intersection-union testing
would reject it. Albeit limited in scope, this qualitative comparison favors Procedure III.

The Bonferroni-Holm procedures require a P -value smaller than α/K if K hypotheses

are tested, whereas Plan III rejects hypotheses when appropriate P -values are less than α.

There are several ways to see that Plan III controls the probability π of at least one false

rejection. Here are two ways.

Consideration of cases. There are three hypotheses H1, H2, and HI , each of which

may be true or false, making 23 = 8 possible cases. In an elementary if slightly

tedious manner, these eight cases may be considered one at a time to verify that, in

each case, procedure III has π ≤ α. To illustrate, consider two of the eight cases.

If H1 ∧H2 ∧HI is true, a false rejection of at least one true null hypothesis occurs
if and only if PM,1∧2 ≤ α, but in this case this happens with probability at most

α. If only H2 is true, then H1 and HI are both false and hence cannot be falsely

rejected, so a false rejection occurs if and only if PM1 ≤ α which in this case occurs

with probability at most α. And so on.

Sequentially exclusive partition of hypotheses. The ordered sequence of three sets

of hypotheses 〈{H1 ∧H2} , {H1, H2} , {HI}〉 has the property that at most one hy-
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pothesis in a set is true if all the hypotheses in earlier sets are false. This is trivially

true of {H1 ∧H2} and {HI} because these two sets contain only one hypothesis,
so they contain at most one true hypothesis. Now, {H1, H2} might contain two
true hypotheses, but {H1, H2} cannot contain two true hypotheses if H1 ∧ H2 is
false. From this structure alone – known as a sequentially exclusive partition of

hypotheses – it follows immediately from Proposition 3 in Rosenbaum (2008) that

the probability of at least one false rejection in procedure III is at most α. The

partition just mentioned had an ordered sequence of three sets of hypotheses, with

1, 2 and 1 hypotheses in the three consecutive sets. The same reasoning works for

an infinite totally ordered collection of sets of hypotheses where each set of hypothe-

ses may contain infinitely many hypotheses; see Rosenbaum (2008; 2010, §19). For

instance, either the collection or the sets within the collection may be indexed by a

real parameter.

Methods I, II and III are intended to provide a contrast between procedures built from

the Bonferroni inequality which equitably subdivide α and structured testing procedures

that organize testing termination without subdividing α. It is easy to build procedures

which blur this distinction, as is usefully done in several of the references; e.g., indeed,

this is already true of Holm’s (1979) procedure. For instance, one could produce a hybrid

which first does method II, and if H1 ∨H2 is rejected because min (PM1, PM2) ≤ α/2 and
max (PM1, PM2) ≤ α, goes on to reject HI if PI ≤ α, so there is both splitting of α in

testing main effects and a termination structure without splitting α in testing interactions.

Our current purpose, however, is to contrast the power of a few quite distinct procedures,

rather than introduce many shades of grey.

As with many other descendents of the closed testing of Marcus, Peritz and Gabriel

(1976), method III makes use of ideas found in closed testing but is not itself an instance

of closed testing. In closed testing in its original form, if one wished to test both main

effects and their interaction, one would first test H1 ∧H2 ∧HI at level α, stopping if this
hypothesis was not rejected. If H1 ∧H2 ∧HI is rejected at level α, one would then test
at level α three more intersection hypotheses, namely H1 ∧H2, H1 ∧HI and H2 ∧HI . If
both H1∧H2 and H1∧HI were rejected at level α, then H1 would be tested, again at level
α. In closed testing in its original form, the investigator may never reach the stage where

main effects are tested separately from the interaction. In contrast, in method III, the

investigator tests main effects first without reference to the interaction, but nonetheless may

6



test for interaction when two main effects are discovered. As Holm (1979) observed, Holm’s

procedure is an instance of closed testing implemented using the Bonferroni inequality as

the basis for testing the intersection of several hypotheses. The focus of the current paper

is a comparison of the power of three procedures that test main effects immediately.

The three methods can be applied also to an R × C two-factor factorial design with

R ≥ 2 and C ≥ 2, for instance by using suitable F -tests in a Gaussian linear model. We do
not consider R > 2 and C > 2 because the focus in the current paper is on the power of the

three procedures against various alternatives, and it is convenient that these alternatives

for the 2× 2 factorial may be described in terms of just three parameters. Although one
can devise structured testing approaches for more than two factors, method III as described

is not applicable with more than two factors.

3 Power of the three analytic plans

Table 1 gives the powers of the three analytic plans, I, II, and III in §2 to reject various

hypotheses for eight possible treatment effects. The eight possible effects, A-H, appear at

the top of Table 1. For instance, in setting A, each factor has a main effect of size 0.5,

and there is no interaction, so if both factors are applied at their high levels, the effect is

1 = 0.5 + 0.5 when compared to the low-low group. The power is computed for Gaussian

errors with known standard deviation one and ten observations per group. For some

details of the computation, see the Appendix. (As is familiar with power calculations for

the Normal distribution, it is not the sample size, the standard deviation or the treatment

effects that determine the power, but rather a noncentrality parameter that summarizes

these quantities. For instance, if the effects and the standard deviation were both doubled,

the powers would be the same.)

The hypotheses tested by methods I, II, and III in §2 are not quite the same, and

the methods terminate when different events occur. For instance, by definition: (a)

hypothesis H1 ∧H2 ∧HI is rejected in method I if any of H1, H2, HI is rejected – that

is, if min (PM1, PM2, PI) ≤ α/3; (b) hypothesis H1 ∧H2 is rejected by method II if either
H1 or H2 is rejected – that is, if min (PM1, PM2) ≤ α/2; whereas, H1 ∧ H2 is rejected
by method III if PM,1∧2 ≤ α. In particular, even in an infinitely large sample, method

II might correctly conclude that both main effects are present by rejecting H1 ∨ H2, but
this correct conclusion might fail to give an adequate description because a substantial

but untested interaction is also present. In this sense, methods I, II and III are running

somewhat different risks to test somewhat different hypotheses. With that caution firmly

7



in mind, we turn to an examination of power.

The chance of rejecting at least one hypothesis is much higher for structured testing.

For instance, in situation A, method III rejects H1 ∧H2 with probability 0.50, method II
rejects H1 ∧H2 with probability 0.44, and method I rejects H1 ∧H2 ∧HI with probability
0.38; otherwise, these methods reject no hypothesis. When structured testing rejects the

hypothesis of no main effect, it typically identifies a specific effect; see identify in Table 1.

Because method I gives equal emphasis to main effects and interactions, it generally has

lower power than methods II and III to detect main effects.

In case E, there are two substantial main effects and an interaction of the same mag-

nitude. Methods II and III operate under the premise that detecting main effects is more

important than detecting interactions, whereas Method I gives equal emphasis to main

effects and interactions. Method I is at its best and method II is at its worst in case

E, because method I has an 86% chance of detecting each effect, while method II cannot

detect interactions. In case E, Method III has an 99% chance of rejecting the hypothesis

of no main effects, a 98% chance of identifying at least one main effect, an 88% chance of

detecting each main effect, and a 69% chance of detecting the interaction.

In case C, there are two main effects and a smaller interaction. None of the procedures

has much chance of detecting the interaction: the power is zero for method II, and is low

for methods I and III. Nonetheless, structured testing has the highest power to detect

the main effects. The situation is similar in case F. In case D, method I is more likely

to detect the interaction than method III, but method III has more power to detect main

effects.

In case G, only one factor has an effect, and the three methods exhibit similar perfor-

mance. In case H, one factor has a larger effect than the other, and structured testing has

slightly better power than method II.

If higher responses are better responses and if both main effects are positive, then from

a clinician’s point of view there is a marked asymmetry between failing to detect a positive

and a negative interaction. A negative interaction might be a reason for avoiding joint use

of the two treatments. Table 1 has both positive and negative interactions. The power of

two-sided tests in balanced designs is, however, symmetrical in the sign of the interaction.

Indeed, this is also true of the signs of the main effects. That is, if one erased the first four

rows of Table 1, keeping the main effects and interactions, and if one changed the signs of

the main effects or the interactions, then the powers in the bottom of Table 1 would be

unchanged.
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Table 1: Power of three analytic plans to reach various conclusions with eight possible
patterns of treatment effects. In situations A and B, the two factors have effects that are
additive without interaction. In situations C, E and F, the simultaneous application of
both factors has an effect greater than the sum of their separate effects. In situation D, the
simultaneous application of both factors has an effect less than the sum of their separate
effects. In situation G, only factor 1 has a main effect. In situation H, factor 1 has a larger
main effect than factor 2. The event identify occurs if PM,1∧2 ≤ α and either PM1 ≤ α or
PM2 ≤ α signifying that method III has identified a specific main effect.

A 2× 2 Factorial with 8 Possible Treatment Effects, A-H
Mean Response at 2× 2 Factor Levels

Factor 1 Level Factor 2 Level A B C D E F G H
Low Low 0 0 0 0 0 0 0 0
High Low .5 .75 .5 1 0 .45 1 .75
Low High .5 .75 .5 1 0 .45 0 .25
High High 1 1.5 1.5 1 2 1.8 1 1

Main Effect 1 .5 .75 .75 .5 1 .9 1 .75
Main Effect 2 .5 .75 .75 .5 1 .9 0 .25
Interaction 0 0 .25 -0.5 1 .45 0 0

Power of Three Analytic Plans to Reach Various Conclusions
Analytic Plan Null Hypothesis Probability of Rejection

I. Holm’s Method H1 .22 .52 .53 .23 .86 .73 .78 .49
Testing Main H2 .22 .52 .53 .23 .86 .73 .02 .07
Effects and HI .02 .03 .08 .23 .86 .25 .02 .02
Interaction H1 ∧H2 ∧HI .38 .75 .76 .50 .99 .91 .79 .53

II. Holm’s Method H1 .28 .61 .61 .28 .87 .79 .82 .56
Testing Just H2 .28 .61 .61 .28 .87 .79 .05 .10
Main Effects H1 ∧H2 .44 .80 .80 .44 .97 .93 .83 .58
III. Structured H1 ∧H2 .50 .86 .86 .50 .99 .96 .82 .60

Testing identify .49 .85 .85 .49 .98 .95 .81 .59
H1 .31 .64 .64 .31 .88 .81 .81 .56
H2 .31 .64 .64 .31 .88 .81 .05 .12
HI .01 .02 .05 .04 .69 .20 .00 .00
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The calculations in Table 1 are exact but assume that the variance is known. Using

simulation, we calculated the powers with an unknown variance and either 8 or 10 subjects

per treatment group, which is a small number for a clinical trial, and the results were

qualitatively very similar to Table 1 and so are not reported.

4 Summary

In the 2×2 factorial design, an investigator may give priority to main effects, while wishing
to look for interactions if main effects are found. In the varied situations in Table 1,

structured testing yielded an increase in power for a given sample size, or a reduction in

sample size for a given power, when compared to the most commonly used procedures that

also control the probability of false rejections in multiple tests.

The Appendix presents a formula for power or sample size calculations when the degrees

of freedom for error are suffi ciently large that they have little effect on power. Software

for sample size calculations in small samples is available from the first author.

Appendix: example of power calculations

We illustrate one of the less standard power computations in Table 1. In each situation

in Table 1, the two main effects contrasts, say θ̂1 and θ̂2, are independent Normal random

variables, θ̂j ∼ N
(
θj , σ

2
j

)
, where σ2j is known, so θ̂

2
j/σ

2
j has a chi-square distribution

with one degree of freedom and noncentrality parameter ωj = θ2j/σ
2
j ; write f (· ;ωj) for this

density and F (· ;ωj) for the cumulative distribution. Let a be the upper α percentile of the
central chi-square distribution on one degree of freedom, and let b be the upper α quantile of

the central chi-square distribution on two degrees of freedom. For α = 0.05, the constants

are a = 3.84 and b = 5.99. In Table 1, hypothesis H1 is rejected if θ̂21/σ
2
1 + θ̂22/σ

2
2 ≥ b

and θ̂21/σ
2
1 ≥ a, and this can happen in two mutually exclusive ways: (i) θ̂21/σ

2
1 ≥ b which

happens with probability 1 − F (b ;ω1), or (ii) for some x, a ≤ x < b, θ̂21/σ
2
1 = x and

θ̂22/σ
2
2 ≥ b− x, so the chance that H1 is rejected is

β (ω1, ω2) =

∫ b

a
f (x;ω1) {1− F (b− x ;ω2)} dx+ {1− F (b ;ω1)} .

In Table 1, σ2j = 1/10, j = 1, 2. In situation C in Table 1, θ1 = θ2 = 0.75, so ω1 =

ω2 = 0.75
2/ (1/10) = 5.625, and β (5.625, 5.625) = 0.64176, as in Table 1. The R function

tiopower computes β (ncp1, ncp2) for given α.

10



> tiopower

function(ncp1,ncp2,alpha=0.05){

q12<-qchisq(1-alpha,2)

q1<-qchisq(1-alpha,1)

g<-function(x){dchisq(x,1,ncp=ncp1)*(1-pchisq(q12-x,1,ncp=ncp2))}

integrate(g,q1,q12)$value+1-pchisq(q12,1,ncp1)

}

> tiopower((.75^2)/.1,(.75^2)/.1)

[1] 0.6417632
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